
Slowdown as a Metric for Congestion Control Fairness
Adrian Zapletal

Delft University of Technology
Fernando Kuipers

Delft University of Technology

ABSTRACT
The conventional definition of fairness in congestion control
is flow rate fairness. However, Internet users typically care
about flow completion times (FCTs) and flow rate fairness
does not lead to equitable FCTs for different users. Therefore,
we reconsider what it means for congestion control to be fair
and posit a novel stance on fairness: it is fair when no flow
unnecessarily prolongs another flow. Based on this stance,
we propose an evaluation framework for congestion control
fairness that uses slowdown (normalized FCT) as the metric.

We demonstrate the usefulness of our framework through
surprising experiment results: in theory, prioritizing short
flows should outperform fair queueing, but we show that this
is not the case due to slow start dominating short flows. The
framework can also analyze traditional flow rate fairness;
we do so and verify well-known “fairness” issues, but addi-
tionally, we show that flow rate unfairness does not induce
slowdown and is thus not a problem per se.

CCS CONCEPTS
• Networks → Transport protocols;

KEYWORDS
Congestion control, Fairness

ACM Reference Format:
Adrian Zapletal and Fernando Kuipers. 2023. Slowdown as a Metric 
for Congestion Control Fairness. In The 22nd ACM Workshop on Hot 
Topics in Networks (HotNets ’23), November 28–29, 2023, Cambridge, 
MA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10. 
1145/3626111.3628185

1 INTRODUCTION
With congestion control being crucial for the operability of 
the Internet and a panoply of new algorithms having been 
proposed recently [1, 5, 20, 24–26, 43, 46, 79–81, 84], it is 
paramount that we evaluate congestion control in a realistic

This work is licensed under a Creative Commons Attribution International 
4.0 License.
HotNets ’23, November 28–29, 2023, Cambridge, MA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0415-4/23/11.
https://doi.org/10.1145/3626111.3628185

manner that corresponds to the desires of users. An essential
criterion for congestion control is fairness: every user shall
be treated equitably. Conventionally, researchers evaluate
fairness by starting multiple flows that share a bottleneck,
making these flows send as much data as they can for some
duration, and assessing for flow rate fairness, that is, whether
the flows obtain equal throughput.

This conventional evaluation setup is not realistic and does
not focus on the desires of users. It has three core problems:
1○ Flow generation. Flows that send indefinite amounts of
data for some duration do not correspond to real flows in
the Internet. Actual web flows have a certain size and end
after transmitting their data.
2○ Flow rate fairness is not optimal. If a long flow and a short
flow share a link, enforcing flow rate fairness prolongs the
short flow’s FlowCompletion Time (FCT) unnecessarily. The-
oretically, all FCTs could be shorter than or the same as under
flow rate fairness [13, 59, 64] and, for most web applications,
users mainly care about FCT [26]. Hence, optimizing for flow
rate fairness does not optimize for the desires of users.
3○ Flow rate unfairness does not necessarily matter. If one flow
obtains more bandwidth than another flow of similar size,
there is flow rate unfairness. However, this unfairness does
not necessarily hurt user experience. The flow with a larger
bandwidth share completes faster; after its completion, the
other flow can utilize the total bandwidth and completes as
fast as it would have completed under flow rate fairness.

The conventional approach to evaluate fairness is clearly
deficient. Yet, the question remains: how should one evaluate
congestion control fairness? To answer this question, we take
a step back and ask what fairness really means. We argue
that fairness is about the equitable treatment of users. Based
on this, we posit a novel stance on congestion control fair-
ness: if no flow prolongs other flows unnecessarily, the
situation is fair. Equivalently, it is unfair if a flow induces
an unnecessarily long FCT for another flow. By “unneces-
sarily” we mean that the other flow could complete faster
without this affecting the first flow. We elucidate our stance
on fairness with an example: Alice downloads a game while
her roommate Bob browses the web. Alice’s download clogs
their home access link, which slows down Bob’s traffic and
deteriorates his experience. This situation is unfair to Bob
because there is no need for this deterioration; Bob’s traffic
could be sped up without prolonging Alice’s download.
Based on our stance on fairness and the aforementioned

problems with the conventional evaluation approach, we

205

https://doi.org/10.1145/3626111.3628185
https://doi.org/10.1145/3626111.3628185
https://doi.org/10.1145/3626111.3628185
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626111.3628185&domain=pdf&date_stamp=2023-11-28


HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Adrian Zapletal and Fernando Kuipers

describe a realistic and user-centric evaluation framework for
congestion control. This framework generates flows using
flow sizes and flow inter-arrival times from real-world traces
(solving problem 1○) and uses slowdown (normalized FCT)
as the metric (solving problems 2○ and 3○). Slowdown has
previously been considered for performance evaluation in
data center research [3, 4, 6, 31, 39, 52, 63, 65]; given our
new stance on fairness, we argue it is also the ideal metric
for congestion control fairness. For example, if Bob’s flows
experience high slowdown because Alice’s flow starves them,
there is a fairness issue.
The goal of this paper is to encourage the networking

community to embrace our stance on fairness and to use
slowdown as a metric for evaluating fairness in future re-
search on congestion control. One can use our proposed
framework to evaluate congestion control for performance,
fairness in our novel sense, and even traditional flow rate
fairness. We implemented the framework and conducted first
experiments with it to demonstrate how one can use it. Our
experiments lead to novel insights:
• While flow rate fairness is not optimal in theory (problem

2○), enforcing it works well in practice. Counterintuitively,
prioritizing short flows does not lead to lower slowdown than
fair queueing because the FCT of short flows is dominated
by slow start.

• We verify problem 3○ and show that flow rate unfairness
does not necessarily matter. If a Congestion Control Al-
gorithm (CCA) can quickly utilize free bandwidth (like
BBR does, for instance), flows experience no unnecessary
slowdown when there is flow rate unfairness.

Related Work.We are not the first to hint at the unrealis-
tic nature of the flows generated in the conventional setup
(problem 1○) [77] or to challenge flow rate fairness (problem
2○) [12, 13, 64, 70] although, to the best of our knowledge,
we are the first to describe how flow rate unfairness does not
necessarily matter (problem 3○). Nonetheless, to this date,
there is no practical alternative for the technical evaluation
of congestion control fairness. Therefore, researchers sim-
ply continue to use the conventional evaluation setup. A
recent proposal is to focus on whether a new CCA is deploy-
able based on the harm it causes to existing CCAs in the
network [77]. This approach is useful, but it focuses on inter-
CCA deployability. We focus on both inter- and intra-CCA
fairness, which is orthogonal to the approach in [77].

2 CONVENTIONAL EVALUATION
APPROACH

The vast majority of congestion control research uses a simi-
lar setup to evaluate fairness [1, 2, 5, 7, 11, 16, 18–21, 24, 25,
28–30, 33–38, 45, 47–51, 53, 55, 57, 58, 61, 62, 67, 69, 71, 73–
76, 79, 81–84]. In this setup, multiple senders send flows

101 103 105 107

Flow size [packets]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F CAIDA 2016

CAIDA 2018
CAIDA 2019
MAWI 20/06/10
Campus trace

(a) Flow sizes.

101 103 105 107

Flow inter-arrival time [us]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CAIDA 2016
CAIDA 2018
CAIDA 2019
MAWI 20/06/10

(b) Flow inter-arrival times.

Figure 1: Flow characteristics in real-world datasets.

through a shared bottleneck link; these flows send data from
an unlimited data backlog for a fixed duration using a tool
such as iperf. While the flows transmit, one measures their
throughput and evaluates whether all flows obtain equal
throughput. This is called flow rate fairness. It is common
to summarize the results using a fairness metric such as
Jain’s index [42]. This conventional evaluation setup has var-
ious problems related to how flows are generated and how
fairness is evaluated. We highlight these problems hereafter.

2.1 Flow Generation
Flows have varying sizes. Unlimitedly backlogged flows,
as generated in the conventional setup, are not realistic. In
the Internet, flows have a certain size; flows need to transmit
some data, and after transmitting their data, they end. Addi-
tionally, flows arrive at varying times. One might argue that
unlimitedly backlogged flows emulate long flows, but most
flows in the Internet are short, and even for long flows, it is
important to take their size into consideration, as we will dis-
cuss in Section 2.2. We verified that flows in the Internet vary
greatly by analyzing flow sizes and flow inter-arrival times
in various real-world traces by CAIDA [17], MAWI [60], and
a campus trace from our institution. We used scripts based
on [9] to conduct this analysis. Figure 1 illustrates our re-
sults, showing that all datasets follow similar heavy-tailed
distributions and most flows are indeed short.
Flows may be rate-limited. The conventional setup as-
sumes that every flow aims to achieve as high throughput
as possible. However, a flow may be limited to some rate.
Examples of such rate-limited flows are streams, file down-
loads that are throttled by the file host, and flows that have
their bottleneck elsewhere in the network. The conventional
evaluation setup does not account for rate-limited flows.

2.2 Flow Rate Fairness as a Metric
Flow rate fairness is not optimal. Establishing fairness
in the Internet is a virtuous goal; every user shall have an
equally good experience. Yet, the conventional fairness met-
ric – flow rate fairness – does not represent user experience.

206



Slowdown as a Metric for Congestion Control Fairness HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

Time

Bandwidth

f1 f2

f3

(a) Flow rate fairness.

Time

Bandwidth

f1 f2 f3

(b) Prioritize short flows.

Figure 2: Flow rate fairness leads to suboptimal FCTs.
Each area depicts one flow, illustrating its bandwidth
usage (y-axis) and time to complete (x-axis).

What users care about is receiving their data fast, and opti-
mizing for flow rate fairness does not necessarily achieve this
goal. Consider the example depicted in Figure 2 where two
short flows (f1 and f2) share the network with one long flow
(f3)1. When all flows are granted equal throughput at all times
(Figure 2a), the short flows complete slower than when short
flows are prioritized (Figure 2b) while the long flow’s comple-
tion time is the same in both scenarios2. Thus, flow rate fair-
ness is not optimal for user experience. This issue with flow
rate fairness has been recognized before [12, 13, 59, 64, 78],
but it seems that the networking community does not heed
this finding. We go one step further and argue that the sce-
nario in Figure 2a is unfair because the short flows experience
needless performance degradation.
Given the characteristics of web flows we derived in Fig-

ure 1, where most flows are short and few are long, the
example depicted in Figure 2 is realistic. Since most flows
are short and flow rate fairness puts short flows at a disad-
vantage, flow rate fairness as a metric is not fit for purpose.
Flow rate unfairness does not necessarily matter. Not
only is optimizing for flow rate fairness not optimal, but it
also does not always matter if one fails to achieve it. Consider
two long flows f1 and f2 of the same size that start at the same
time like depicted in Figure 3. In our example, the flows take
30 s to complete if they are on their own. If they share the
bandwidth equally, both flows complete after 60 s (Figure 3a).
If f1 takes up a larger share of the bandwidth, it completes
faster. For instance, if it takes up 75% of the bandwidth, it
completes after 40 s. According to flow rate fairness, this is
bad. However, f2 can now utilize the bandwidth fully and
still completes after 60 s (Figure 3b). Compared to ideal flow
rate fairness, no flow gets prolonged. That is, in this scenario,
flow rate unfairness does not cause any damage. Therefore,
we argue that the scenario in Figure 3b is fair because no
flow degrades another flow’s performance. Additionally, this
example shows how it is essential to take flow sizes into
account even for long flows rather than just emulating long
flows using unlimitedly backlogged flows.
1This example is inspired by a similar example by Briscoe [13].
2Moreover, it is proven that prioritizing short flows does not starve long
flows if the flows follow a heavy-tailed distribution (as web flows do) [8, 59].

Time

Bandwidth

f1

f2

60 s

(a) Flow rate fairness.

Time

Bandwidth

f1 f2

60 s

(b) Flow rate unfairness.

Figure 3: Flow rate unfairness is not a problem per se
because it does not necessarily prolong FCTs.

3 OUR EVALUATION FRAMEWORK
We have derived problems with the conventional evaluation
setup and have argued for a novel stance on fairness: it is
fair when no flow prolongs other flows unnecessarily. Based
on these prolegomena, we propose an evaluation framework
for congestion control fairness. We want to encourage the
community to take the final leap away from using flow rate
fairness as the primary metric for congestion control fairness
by providing a practical and simple alternative and show-
casing its usefulness. Our evaluation framework requires a
setup where multiple senders share a bottleneck, similarly to
the conventional setup. It differs from the conventional setup
in how flows are generated and in the metric: flows are rep-
resentative of actual web flows, and the metric is slowdown
(i.e., the normalized FCT).

3.1 Flow Generation
Flows are generated either with a predefined size and start
time (e.g., to enforce a long flow that clogs the bottleneck)
or by leveraging the flow size and inter-arrival time distribu-
tions shown in Figure 1 to generate randomized flows that
resemble real-world workloads. To generate a randomized
flow, we pick one random value from a flow size distribution
and one from a flow inter-arrival time distribution. This setup
allows us to conduct realistic but controlled experiments in
which flows correspond to actual web flows. Additionally,
our framework supports generating rate-limited flows by
limiting a sender’s outgoing bandwidth.

3.2 Slowdown as a Metric
For most applications, users mainly care about their flows
finishing fast (e.g., web browsing, e-commerce, social apps,
messaging, file sharing). So, a fairness metric that reflects
user experience should be based on FCT. However, FCT
by itself is not useful because it depends on the flow size,
available bandwidth, and Round-Trip Time (RTT), making it
hard to compare FCTs of differently sized flows. Additionally,
FCTs are not intuitive: it is not intuitively clear to people
what constitutes a “good” FCT in a given scenario.

These problems with FCT as a metric arise because FCT is
an absolute value. Normalizing an FCT by the theoretically

207



HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Adrian Zapletal and Fernando Kuipers

optimal FCT (given flow size, bandwidth, and RTT) yields
the slowdown. We define it as slowdown =

measured_fct
optimal_fct where

optimal_fct = flow_size
min{bandwidth,rate_limit} + rtt. The bandwidth is

the bottleneck capacity, and the rate_limit is the flow’s rate
limit if it has one (∞ if not). Slowdown is a relative value,
making it easy to compare the slowdown of differently sized
flows. Additionally, slowdown is intuitive: prolonging a flow
that could take 500ms by 2 s annoys users (slowdown of
5), while prolonging a flow that could take 1min by 2 s is
fine (slowdown of 1.033). As an added bonus, slowdown is
useful for both evaluation of performance (does a single flow
complete fast?) and evaluation of fairness (do coexisting
flows degrade each other’s performance?). In fact, slowdown
has been used as a performance metric before. We are the
first to propose using it as a fairness metric.

Slowdown intuitively represents the needs of users. How-
ever, slowdown is a per-flow value, whereas fairness experi-
ments involve multiple flows. Therefore, we compute both
the mean slowdown (to see whether flows perform equitably
on average) and the maximum slowdown (to see whether
any flow gets starved) across all flows.
When there are multiple active flows and the bottleneck

is congested, some slowdown is inevitable, and it is unclear
what the best values for mean and maximum slowdown are.
Then, it is useful to compare the slowdown results of experi-
ments to the theoretically optimal slowdown. In our frame-
work, we simulate an idealized network that uses Shortest
Remaining Processing Time (SRPT) scheduling at the bottle-
neck router as an optimum to compare results of experiments
to. SRPT optimizes the mean FCT [72] and is 2-competitive
for mean slowdown [66]3.

3.3 Implementation
We implemented our evaluation framework using Python.
In our implementation, one server acts as a controller that
establishes ssh connections to servers that act as senders,
router, and receiver, and instructs them to configure parame-
ters and start processes for sending and receiving flows. We
use Linux sockets in a C script for sending and receiving
flows. We make our implementation publicly available4.

4 EXPERIMENTS
Our framework is useful for experiments on the performance
of flows that are alone in the network, on fairness in our novel
sense (flows should not prolong other flows), and on fairness
in the traditional sense (flow rate fairness). We demonstrate
3While SRPT is not theoretically optimal for slowdown, we still use it as
optimum because it is proven that no online algorithm exists that optimizes
slowdown in every scenario [10, 66], and SRPT is close to optimal for
mean [66] and maximum slowdown [10]. SRPT only leads to suboptimal
slowdown when a short flows starts shortly before a long flow ends [66].
4https://gitlab.tudelft.nl/lois/cc-fct-eval-framework

CCAs Reno, Cubic, BBR, BBRv2
RTTs 10ms, 20ms, 50ms, 100ms

Buffer sizes 50 packets, 250 packets, 1000 packets
(1 packet = 1500 Bytes)

QDiscs FIFO, FQ/FQ_CoDel, HHF

Table 1: Parameter values used in our experiments.

102 104

Flow size [packets]

2

4

6

Sl
ow

do
wn

50 packets buffer

bbr
bbr2

cubic
reno

102 104

Flow size [packets]

250 packets buffer

102 104

Flow size [packets]

1000 packets buffer

bbr
bbr2

cubic
reno

10 ms RTT
20 ms RTT

50 ms RTT
100 ms RTT

Figure 4: Using our framework for performance analy-
sis: the slowdown per flow size of flows on their own.

such experiments using our implementation on six physical
servers that are directly connected via Gigabit Ethernet. Four
servers act as senders, one as router, and one as receiver. The
bottleneck link between the router and the receiver is limited
to 100Mbit/s. We deployed Linux kernel 5.13.12 with BBRv2
alpha enabled5 on all servers. Table 1 summarizes the values
of the parameters we used.
Performance of solo flows. We started flows of varying
sizes on their own and measured their slowdown with dif-
ferent CCAs, RTTs, and buffer sizes to evaluate their solo
performance. Figure 4 summarizes the slowdown per flow
size. Generally, the shortest flows experience a slowdown of
2 because they complete in two RTTs: one RTT for the TCP
handshake and one for the data transmission. For short flows
larger than the Initial Window (IW), slow start’s exponential
growth is inefficient and leads to notable slowdown. For long
flows, the effect of this inefficiency diminishes. Following our
flow size analysis in Figure 1, about half of all flows are short
enough to complete within two RTTs. Almost all remaining
flows, i.e., about half of all flows, are sized such that slow start
induces significant slowdown for them. Only about 1% of flows
are large enough that steady state overshadows slow start and
they experience only minuscule slowdown.
As one might expect, shorter RTTs lower the slowdown

induced by slow start. For Reno and, to a lesser extent, Cubic,
even long flows experience notable slowdown when the
buffer is small and the RTT is long because their loss-based
mechanisms struggle to keep up the necessary throughput.
We have also tested different IW configurations; as expected,
a larger IW value generally reduces slowdown when flows
are alone (results omitted here for brevity).
Novel type of fairness experiments. A well-known issue
where flows prolong other flows unnecessarily, which we

5https://github.com/google/bbr/tree/v2alpha at commit a23c4bb.

208

https://gitlab.tudelft.nl/lois/cc-fct-eval-framework
https://github.com/google/bbr/tree/v2alpha


Slowdown as a Metric for Congestion Control Fairness HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

10 20 50 100
RTT [ms]

100

101

102

FI
FO

Sl
ow

do
wn

50 packets buffer

10 20 50 100
RTT [ms]

250 packets buffer

10 20 50 100
RTT [ms]

1000 packets buffer

10 20 50 100
RTT [ms]

2

4

6

FQ
Sl

ow
do

wn

FQ 250 packets buffer

10 20 50 100
RTT [ms]

FQ 1000 packets buffer

10 20 50 100
RTT [ms]

FQ_CoDel

10 20 50 100
RTT [ms]

2

4

6

HH
F

Sl
ow

do
wn

50 packets buffer

10 20 50 100
RTT [ms]

250 packets buffer

10 20 50 100
RTT [ms]

1000 packets buffer
bbr bbr2 cubic reno srpt

Figure 5: Using our framework for novel fairness ex-
periments: the mean and maximum slowdown when a
bulk flow and short flows share a bottleneck. We com-
pare FIFO (on a log-scale y-axis), FQ, and HHF.

deem unfair, is bufferbloat [32]: bulk flows fill buffers and in-
crease the latency for coexisting flows. This increased latency
causes unnecessary slowdown. To test this issue, we set up
experiments where one bulk flow coexists with short flows
that we generate by picking random flow sizes and inter-
arrival times from a MAWI trace [60]. We used the same seed
for the random number generation across repetitions of the
experiment to ensure that the results are comparable. Differ-
ent seeds lead to similar results (omitted here for brevity). We
tested different CCAs, RTTs, buffer sizes, and different queue-
ing disciplines at the bottleneck: First In First Out (FIFO),
Fair Queueing (FQ) and FQ_CoDel [41], and Heavy-Hitter
Filter (HHF). HHF tries to detect long flows (using classic
heavy hitter detection [27]), puts long and short flows into
two separate queues, and prioritizes the short flow queue.

Figure 5 illustrates the mean and the maximum slowdown
for each combination of parameters. It also shows the mean
and maximum slowdown of an idealized network with SRPT
as the optimum (mean ≈ 1.01 and maximum ≈ 1.1). When
using FIFO, the bulk flow fills up the buffer to some extent
with all tested CCAs, thereby slowing down the short flows.
Buffer-filling CCAs (Reno and Cubic) and large buffers ag-
gravate this issue and can lead to tremendous performance
degradation for short flows (up to a slowdown of 93 in our
experiment). We argue that this performance degradation
is highly unfair. BBR and BBRv2 do not fully fill the buffer,
but they do create a queue that causes notable slowdown for
short flows (maximum slowdown between 6 and 12).

Separating flows resolves bufferbloat. This is evident in the
results where the router runs FQ or FQ_CoDel. When using
FQ, we set the maximum per-flow queue size to 1/5 of the
total buffer size. For small buffers, this leads to tiny queues,
which cause notable packet loss and, thus, slowdown. With
FQ_CoDel, the queues are handled by CoDel, and the buffer
is simply large enough to never overflow (10000 packets).
Apart from situations with high packet loss due to small FQ
buffers, no flow experiences dramatic slowdown with FQ or
FQ_CoDel. Nonetheless, the results are still not optimal.

Based on the example in Figure 2, where prioritizing short
flows leads to lower FCTs than FQ, we expected HHF to
outperform FQ because it prioritizes short flows. However,
our results show that the slowdowns with HHF hardly differ
from the slowdowns with FQ. This is because with bufferbloat
being resolved through flow separation, the main factor con-
tributing to the slowdown of short flows is slow start. In fact,
the slowdown coexisting flows experience when separated into
different queues is almost the same as the slowdown flows expe-
rience when they are alone. In both our solo flow experiments
(Figure 4) and our experiments where coexisting flows are
separated (Figure 5), the maximum slowdown is about 3 for
10ms RTT flows and about 5.5 for 100ms RTT flows.

There is another problem with HHF: it requires some pa-
rameters to be configured, and a configuration that works
well in one setting might not work in others. The heavy hit-
ter detection that HHF employs classifies a flow as a heavy
hitter if the flow has sent 𝑏 bytes within a time period 𝑡 ; the
parameters 𝑏 and 𝑡 need to be configured. We configured
HHF such that it works in the setting we show here, but in
other settings, the same configuration either fails to detect
heavy hitters or falsely detects short flows as heavy hitters.
A scheme like FQ_CoDel, on the other hand, always works6.
Traditional fairness experiments.While the novel type
of fairness experiments we showed above is our framework’s
primary use case, one can also use the framework to evalu-
ate traditional flow rate fairness and verify conclusions that
previous work has drawn using the conventional setup. How-
ever, from the same experiments, one can also draw novel
conclusions. To demonstrate this, we verified well-known
results regarding RTT unfairness (i.e., flows with different
RTTs obtain different shares of the bandwidth), but we show
that this “unfairness” has no negative impact per se because
it does not necessarily induce additional slowdown. We con-
ducted these experiments by starting two flows of the same
size simultaneously. If they achieve flow rate fairness, both
obtain a slowdown of 2. We fixed the first flow’s RTT to
20ms and varied the RTT of the second flow.

6Ironically, we started this work expecting that we would show how a
scheme like HHF outperforms FQ and should thus be deployed in all routers,
but we ended up showing that this is not the case!

209



HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Adrian Zapletal and Fernando Kuipers

10 20 50 100
RTT of Flow 2 [ms]

2

4

BB
R

Sl
ow

do
wn

50 packets buffer
Flow 1 (20 ms RTT)
Flow 2 (RTT varies)

10 20 50 100
RTT of Flow 2 [ms]

250 packets buffer

10 20 50 100
RTT of Flow 2 [ms]

1000 packets buffer

10 20 50 100
RTT of Flow 2 [ms]

2

4

BB
Rv

2
Sl

ow
do

wn

50 packets buffer

10 20 50 100
RTT of Flow 2 [ms]

250 packets buffer

10 20 50 100
RTT of Flow 2 [ms]

1000 packets buffer

10 20 50 100
RTT of Flow 2 [ms]

2

4

Cu
bi

c
Sl

ow
do

wn

50 packets buffer

10 20 50 100
RTT of Flow 2 [ms]

250 packets buffer

10 20 50 100
RTT of Flow 2 [ms]

1000 packets buffer

10 20 50 100
RTT of Flow 2 [ms]

2

4

Re
no

Sl
ow

do
wn

50 packets buffer

10 20 50 100
RTT of Flow 2 [ms]

250 packets buffer

10 20 50 100
RTT of Flow 2 [ms]

1000 packets buffer

Figure 6: Using our framework for traditional fairness
experiments: the slowdown per flow for two long flows
of the same size, where the RTT of the first flow is fixed
to 20ms and the RTT of the second flow varies. The
dotted line indicates the slowdown both flows obtain
if they achieve flow rate fairness. We verify RTT un-
fairness, but also show that it does not always matter.

Figure 6 illustrates the slowdown per flow in these ex-
periments and verifies various results that researchers have
found using the conventional setup: BBR suffers from an RTT
unfairness that favors flows with long RTTs [37, 71]. BBRv2
still suffers from some RTT unfairness, but the issue is less
pronounced than with its predecessor [33, 73]. With Reno
and Cubic, short RTT flows obtain more bandwidth [15].
When the RTTs of flows are equal, Reno’s Additive Increase
Multiplicative Decrease (AIMD) scheme leads to approxi-
mate flow rate fairness [22]. Lastly, the results verify again
that Reno, as well as, to a lesser extent, Cubic, struggle to
fully utilize the bandwidth when the buffer is small and the
RTT is long [20]. While Figure 6 confirms well-known is-
sues regarding RTT unfairness, it also shows a new result:
flow rate unfairness does not necessarily matter as long as
the CCA can quickly utilize newly available bandwidth. Flow
rate unfairness does not imply that a flow gets slowed down
unnecessarily. In our experiments, BBR and BBRv2 flows
utilize bandwidth fast in all scenarios and never experience
a slowdown notably larger than 2, which is close to optimal.
Reno, in particular, struggles with utilizing bandwidth when
a flow has a long RTT because AIMD raises the sending rate
too slowly.

5 DISCUSSION
Why flows as the core entity? Some researchers have ar-
gued that flows are not the correct entity to look at because
(1) they are not the economic actors in the Internet [12, 14],
and (2) users can (and do) start multiple flows per applica-
tion [12]. While both points are true, (1) economic entities in
the Internet do not map well to users because an economic
entity can comprise an arbitrary number of users, and the
foundation for fairness should be users. Flows also do not
map directly to users, but they are more representative of
actual applications and, thus, of user experience than eco-
nomic entities. Hence, flows are more useful as a foundation
for fairness. (2) The problem with starting multiple flows is
that it “games” flow rate fairness as a metric. However, it
does not “game” slowdown: in common cases where multi-
ple flows are started (e.g., loading a website using multiple
flows), users effectively care about the completion time of
the whole transfer (e.g., when the website has loaded fully).
Hence, for such applications, one can group flows using an
abstraction such as coflow [23], for which our framework
can, in principle, also be applied.
For which applications is this framework useful? The
focus of our evaluation framework are classic web applica-
tions. Another popular application is streaming. While our
framework can model simple streams (e.g., audio streams)
using rate-limited flows, this approach is often not sufficient
for a realistic evaluation, especially for video content. Video
streams typically use adaptive bitrate schemes and change
the video quality during a session. However, throughput
or flow rate fairness are also unsuitable metrics for video.
What matters for video is the perceived Quality of Experi-
ence (QoE). There are application-specific metrics for video
QoE and QoE fairness [40, 44, 54, 56, 68]. Arguably, these
metrics are better suited for evaluating video streams. An-
other type of applications are interactive applications that
keep connections alive and transmit data when needed. For
such applications, one can evaluate the slowdown of each
data transmission within an active connection.
How canwe achieve lower slowdown? Current CCAs per-
form suboptimally even when flows are alone (Figure 4). A
faster flow startup mechanism would improve performance
(but must not cause slowdown for coexisting flows). With
faster flow startup, a scheduler that prioritizes short flows
could achieve the desired effect and improve fairness com-
pared to FQ (unlike in Figure 5). Finally, CCAs must ensure
they utilize newly available bandwidth quickly (Figure 6).

Acknowledgements. We thank Chenxing Ji, Anup Bhat-
tacharjee, George Iosifidis, Georgios Smaragdakis, and the
anonymous reviewers for their valuable comments. This
work was supported by the Netherlands Organisation for
Scientific Research (NWO) under the CATRIN project.

210



Slowdown as a Metric for Congestion Control Fairness HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

REFERENCES
[1] Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. 2020. Classic

Meets Modern: A Pragmatic Learning-Based Congestion Control for
the Internet. In ACM SIGCOMM.

[2] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data Center TCP (DCTCP). ACM CCR 40, 4 (2010).

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal
Near-Optimal Datacenter Transport. In ACM SIGCOMM.

[4] Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita Dukkipati.
2023. Bolt: Sub-RTT Congestion Control for Ultra-Low Latency. In
USENIX NSDI.

[5] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based
Congestion Control for the Internet. In USENIX NSDI.

[6] Wei Bai, Li Chen, and Kai Chen. 2015. Information-Agnostic Flow
Scheduling for Commodity Data Centers. In USENIX NSDI.

[7] Andrea Baiocchi, Angelo P. Castellani, and Francesco Vacirca. 2007.
YeAH-TCP: Yet Another Highspeed TCP. In PFLDnet.

[8] Nikhil Bansal and Mor Harchol-Balter. 2001. Analysis of SRPT Sched-
uling: Investigating Unfairness. In ACM SIGMETRICS.

[9] Simon Bauer, Benedikt Jaeger, Fabian Helfert, Philippe Barias, and
Georg Carle. 2021. On the Evolution of Internet Flow Characteristics.
In ACM/IRTF ANRW.

[10] Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. 1998.
Flow and Stretch Metrics for Scheduling Continuous Job Streams. In
ACM-SIAM Symposium on Discrete Algorithms.

[11] Lawrence S. Brakmo and Larry L. Peterson. 1995. TCP Vegas: End
to End Congestion Avoidance on a Global Internet. IEEE Journal on
Selected Areas in Communications 13, 8 (1995).

[12] Bob Briscoe. 2007. Flow Rate Fairness: Dismantling a Religion. ACM
CCR 37, 2 (2007).

[13] Bob Briscoe. 2019. Per-Flow Scheduling and the End-to-End Argument.
Discussion Paper TR-BB-2019-001, bobbriscoe.net. (2019).

[14] Lloyd Brown, Ganesh Ananthanarayanan, Ethan Katz-Bassett, Arvind
Krishnamurthy, Sylvia Ratnasamy, Michael Schapira, and Scott
Shenker. 2020. On the Future of Congestion Control for the Public
Internet. In ACM HotNets.

[15] P. Brown. 2000. Resource sharing of TCP connections with different
round trip times. In IEEE INFOCOM.

[16] Hadrien Bullot, Roger Leslie Cottrell, and Richard Hughes-Jones. 2003.
Evaluation of Advanced TCP Stacks on Fast Long-Distance Production
Networks. Springer Journal of Grid Computing 1 (2003).

[17] CAIDA. 2016–2019. The CAIDA UCSD Anonymized Internet Traces –
2016 to 2019. https://www.caida.org/catalog/datasets/passive_dataset.
(2016–2019).

[18] Carlo Caini and Rosario Firrincieli. 2004. TCP Hybla: A TCP Enhance-
ment for Heterogeneous Networks. Wiley Int. J. Satell. Commun. Netw.
22, 5 (2004).

[19] Yi Cao, Arpit Jain, Kriti Sharma, Aruna Balasubramanian, and Anshul
Gandhi. 2019. When to Use and When Not to Use BBR: An Empirical
Analysis and Evaluation Study. In ACM IMC.

[20] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Has-
sas Yeganeh, and Van Jacobson. 2016. BBR: Congestion-Based Con-
gestion Control: Measuring Bottleneck Bandwidth and Round-Trip
Propagation Time. ACM Queue 14, 5 (2016).

[21] Daniela M. Casas-Velasco, Fabrizio Granelli, and Nelson L. S. da Fon-
seca. 2022. Impact of background traffic on the BBR andCUBIC variants
of the TCP protocol. IEEE Networking Letters (2022).

[22] Dah-Ming Chiu and Raj Jain. 1989. Analysis of the Increase and De-
crease Algorithms for Congestion Avoidance in Computer Networks.

Computer Networks and ISDN Systems 17 (1989).
[23] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: A Networking

Abstraction for Cluster Applications. In ACM HotNets.
[24] Mo Dong, Qingxi Li, Doron Zarchy, Brighten Godfrey, and Michael

Schapira. 2015. PCC: Re-architecting Congestion Control for Consis-
tent High Performance. In USENIX NSDI.

[25] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. 2018. PCC Vivace: Online-
Learning Congestion Control. In USENIX NSDI.

[26] Nandita Dukkipati and Nick McKeown. 2006. Why Flow-Completion
Time is the Right Metric for Congestion Control. ACM CCR 36, 1
(2006).

[27] Cristian Estan and George Varghese. 2002. New Directions in Traffic
Measurement and Accounting. In ACM SIGCOMM.

[28] Ferenc Fejes, Gergő Gombos, Sándor Laki, and Szilveszter Nádas. 2019.
Who Will Save the Internet from the Congestion Control Revolution?.
In ACM Workshop on Buffer Sizing.

[29] Ferenc Fejes, Gergő Gombos, Sándor Laki, and Szilveszter Nádas. 2020.
On the Incompatibility of Scalable Congestion Controls over the Inter-
net. In IFIP Networking.

[30] Cheng Peng Fu and S.C. Liew. 2003. TCP Veno: TCP Enhancement
for Transmission Over Wireless Access Networks. IEEE Journal on
Selected Areas in Communications 21, 2 (2003).

[31] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal,
Sylvia Ratnasamy, and Scott Shenker. 2015. pHost: Distributed near-
Optimal Datacenter Transport over Commodity Network Fabric. In
ACM CoNEXT.

[32] Jim Gettys and Kathleen Nichols. 2011. Bufferbloat: Dark Buffers in
the Internet. ACM Queue 9, 11 (2011).

[33] Jose Gomez, Elie Kfoury, Jorge Crichigno, Elias Bou-Harb, and Gautam
Srivastava. 2020. A Performance Evaluation of TCP BBRv2 Alpha.
In IEEE International Conference on Telecommunications and Signal
Processing (TSP).

[34] Luigi A. Grieco and Saverio Mascolo. 2004. Performance Evaluation
and Comparison ofWestwood+, New Reno, and Vegas TCP Congestion
Control. ACM CCR 34, 2 (2004).

[35] Sangtae Ha, Yusung Kim, Long Le, Injong Rhee, and Lisong Xu. 2006.
A Step toward Realistic Performance Evaluation of High-Speed TCP
Variants. In PFLDnet.

[36] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-
Friendly High-Speed TCP Variant. ACM OSR 42, 5 (2008).

[37] Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Experimental
Evaluation of BBR Congestion Control. In IEEE ICNP.

[38] Mario Hock, Felix Neumeister, Martina Zitterbart, and Roland Bless.
2017. TCP LoLa: Congestion Control for Low Latencies and High
Throughput. In IEEE LCN.

[39] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Finish-
ing Flows Quickly with Preemptive Scheduling. In ACM SIGCOMM.

[40] Tobias Hoßfeld, Lea Skorin-Kapov, Poul E. Heegaard, and Martín
Varela. 2018. A new QoE fairness index for QoE management. Springer
Quality and User Experience 3, 4 (2018).

[41] Toke Høiland-Jørgensen, Paul McKenney, Dave Täht, Jim Gettys, and
Eric Dumazet. 2018. The Flow Queue CoDel Packet Scheduler and
Active Queue Management Algorithm. RFC 8290. (2018).

[42] Raj Jain, Dah Ming Chiu, and HaweWR. 1998. A Quantitative Measure
Of Fairness And Discrimination For Resource Allocation In Shared
Computer Systems. Eastern Research Laboratory, Digital Equipment
Corporation, Hudson, MA cs.NI/9809099 (1998).

[43] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and
Aviv Tamar. 2019. A Deep Reinforcement Learning Perspective on
Internet Congestion Control. In ICML.

211

https://www.caida.org/catalog/datasets/passive_dataset


HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Adrian Zapletal and Fernando Kuipers

[44] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness,
Efficiency, and Stability in HTTP-based Adaptive Video Streaming
with FESTIVE. In ACM CoNEXT.

[45] Kazumi Kaneko, Tomoki Fujikawa, Zhou Su, and Jiro Katto. 2007.
TCP-Fusion: A Hybrid Congestion Control Algorithm for High-speed
Networks. In PFLDnet.

[46] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion
Control for High Bandwidth-Delay Product Networks. ACM CCR 32,
4 (2002).

[47] Elie F. Kfoury, Jose Gomez, Jorge Crichigno, and Elias Bou-Harb. 2020.
An Emulation-based Evaluation of TCP BBRv2 Alpha for Wired Broad-
band. Elsevier Computer Communications 161 (2020).

[48] R. King, R. Baraniuk, and R. Riedi. 2005. TCP-Africa: an adaptive and
fair rapid increase rule for scalable TCP. In IEEE INFOCOM.

[49] Ike Kunze, Jan Rüth, and Oliver Hohlfeld. 2020. Congestion Control in
the Wild – Investigating Content Provider Fairness. IEEE Transactions
on Network and Service Management 17, 2 (2020).

[50] Douglas J. Leith and Robert N. Shorten. 2004. H-TCP: TCP for high-
speed and long-distance networks. In PFLDnet.

[51] Douglas J. Leith, Robert N. Shorten, and G. McCullagh. 2007. Experi-
mental evaluation of Cubic-TCP. In PFLDnet.

[52] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng,
Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Al-
izadeh, and Minlan Yu. 2019. HPCC: High Precision Congestion Con-
trol. In ACM SIGCOMM.

[53] Yee-Ting Li, Douglas J. Leith, and Robert N. Shorten. 2007. Experimen-
tal Evaluation of TCP Protocols for High-Speed Networks. IEEE/ACM
ToN 15, 5 (2007).

[54] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and
Megha Manohara. 2016. Toward A Practical Perceptual Video Quality
Metric. Netflix Technology Blog. (2016).

[55] Shao Liu, Tamer Başar, and R. Srikant. 2008. TCP-Illinois: A loss- and
delay-based congestion control algorithm for high-speed networks.
Elsevier Performance Evaluation 65, 6 (2008).

[56] Ahmed Mansy, Marwan Fayed, and Mostafa Ammar. 2015. Network-
layer Fairness for Adaptive Video Streams. In IFIP Networking.

[57] Gustavo Marfia, Claudio Palazzi, Giovanni Pau, Mario Gerla, M. Y.
Sanadidi, andMarco Roccetti. 2007. TCP Libra: Exploring RTT-Fairness
for TCP. In IFIP Networking.

[58] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and
Ren Wang. 2001. TCP Westwood: Bandwidth Estimation for Enhanced
Transport over Wireless Links. In ACM MobiCom.

[59] L. Massoulié and J Roberts. 2000. Bandwidth sharing and admis-
sion control for elastic traffic. Springer Telecommunication Systems 15
(2000).

[60] MAWIWorking Group. 2020. Packet traces fromWIDE backbone, sam-
plepoint G, 2020/06/10. https://mawi.wide.ad.jp/mawi/samplepoint-G/
2020/202006101400.html. (2020).

[61] Dimitrios Miras, Martin Bateman, and Saleem Bhatti. 2008. Fairness of
High-Speed TCP Stacks. In IEEE International Conference on Advanced
Information Networking and Applications (AINA).

[62] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-
all, and David Zats. 2015. TIMELY: RTT-Based Congestion Control for
the Datacenter. In ACM SIGCOMM.

[63] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. 2018.
Revisiting Network Support for RDMA. In ACM SIGCOMM.

[64] Gautam Raj Moktan, Sebastian Siikavirta, Mikko Särelä, and Jukka
Manner. 2012. Favoring the Short. In IEEE INFOCOM Workshops.

[65] Aisha Mushtaq, Radhika Mittal, James McCauley, Mohammad Al-
izadeh, Sylvia Ratnasamy, and Scott Shenker. 2019. Datacenter Con-
gestion Control: Identifying what is essential and making it practical.
ACM CCR 49, 3 (2019).

[66] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J.E. Gehrke. 1999.
Online Scheduling to Minimize Average Stretch. In IEEE Symposium
on Foundations of Computer Science.

[67] Aarti Nandagiri, Mohit P. Tahiliani, Vishal Misra, and K. K. Ramakr-
ishnan. 2020. BBRv1 vs BBRv2: Examining Performance Differences
through Experimental Evaluation. In IEEE LANMAN.

[68] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichandra Addanki,
Mehrdad Khani, Prateesh Goyal, and Mohammad Alizadeh. 2019. End-
to-End Transport for Video QoE Fairness. In ACM SIGCOMM.

[69] Adithya Abraham Philip, Ranysha Ware, Rukshani Athapathu, Justine
Sherry, and Vyas Sekar. 2021. Revisiting TCP Congestion Control
Throughput Models & Fairness Properties At Scale. In ACM IMC.

[70] Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Kumar, and Aditya
Akella. 2022. Congestion Control in Machine Learning Clusters. In
ACM HotNets.

[71] Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer,
Fabien Geyer, and Georg Carle. 2018. Towards a Deeper Understanding
of TCP BBR Congestion Control. In IFIP Networking.

[72] Linus E. Schrage and Louis W. Miller. 1966. The Queue M/G/1 with the
Shortest Remaining Processing Time Discipline. INFORMS Operations
Research 14, 4 (1966).

[73] Yeong-Jun Song, Geon-Hwan Kim, Imtiaz Mahmud, Won-Kyeong Seo,
and You-Ze Cho. 2021. Understanding of BBRv2: Evaluation and
Comparison With BBRv1 Congestion Control Algorithm. IEEE Access
9 (2021).

[74] K.N. Srijith, Lillykutty Jacob, and A.L. Ananda. 2005. TCP Vegas-A:
Improving the performance of TCP Vegas. Elsevier Computer Commu-
nications 28 (2005).

[75] K. Tan, J. Song, Q. Zhang, and M. Sridharan. 2006. A Compound
TCP Approach for High-Speed and Long Distance Networks. In IEEE
INFOCOM.

[76] Belma Turkovic, Fernando Kuipers, and Steve Uhlig. 2019. Interactions
between Congestion Control Algorithms. In IFIP TMA.

[77] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine
Sherry. 2019. Beyond Jain’s Fairness Index: Setting the Bar For The
Deployment of Congestion Control Algorithms. In ACM HotNets.

[78] ChristoWilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
2011. Better Never than Late: Meeting Deadlines in Datacenter Net-
works. In ACM SIGCOMM.

[79] Keith Winstein and Hari Balakrishnan. 2013. TCP Ex Machina:
Computer-Generated Congestion Control. In ACM SIGCOMM.

[80] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013.
Stochastic Forecasts Achieve High Throughput and Low Delay over
Cellular Networks. In USENIX NSDI.

[81] Yaxiong Xie, Fan Yi, and Kyle Jamieson. 2020. PBE-CC: Congestion
Control via Endpoint-Centric, Physical-Layer Bandwidth Measure-
ments. In ACM SIGCOMM.

[82] Lisong Xu, K. Harfoush, and Injong Rhee. 2004. Binary Increase Con-
gestion Control (BIC) for Fast Long-Distance Networks. In IEEE INFO-
COM.

[83] Lin Xue, Suman Kumar, Cheng Cui, and Seung-Jong Park. 2014. A
study of fairness among heterogeneous TCP variants over 10 Gbps
high-speed optical networks. Elsevier Optical Switching and Networking
13 (2014).

[84] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subrama-
nian, and Carmelita Görg. 2015. Adaptive Congestion Control for
Unpredictable Cellular Networks. In ACM SIGCOMM.

212

https://mawi.wide.ad.jp/mawi/samplepoint-G/2020/202006101400.html
https://mawi.wide.ad.jp/mawi/samplepoint-G/2020/202006101400.html

	Abstract
	1 Introduction
	2 Conventional Evaluation Approach
	2.1 Flow Generation
	2.2 Flow Rate Fairness as a Metric

	3 Our Evaluation Framework
	3.1 Flow Generation
	3.2 Slowdown as a Metric
	3.3 Implementation

	4 Experiments
	5 Discussion
	References

