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Abstract—Cyber threat attribution can play an important role
in increasing resilience against digital threats. Recent research
focuses on automating the threat attribution process and on
integrating it with other efforts, such as threat hunting. To
support increasing automation of the cyber threat attribution
process, this paper proposes a modular architecture as an
alternative to current monolithic automated approaches. The
modular architecture can utilize opinion pools to combine the
output of concrete attributors. The proposed solution increases
the tractability of the threat attribution problem and offers
increased usability and interpretability, as opposed to monolithic
alternatives. In addition, a Pairing Aggregator is proposed as
an aggregation method that forms pairs of attributors based on
distinct features to produce intermediary results before finally
producing a single Probability Mass Function (PMF) as output.
The Pairing Aggregator sequentially applies both the logarithmic
opinion pool and the linear opinion pool. An experimental
validation suggests that the modular approach does not result in
decreased performance and can even enhance precision and recall
compared to monolithic alternatives. The results also suggest that
the Pairing Aggregator can improve precision over the linear and
logarithmic opinion pools. Furthermore, the improved k-accuracy
in the experiment suggests that forensic experts can leverage
the resulting PMF during their manual attribution processes to
enhance their efficiency.

Index Terms—Cyber Threat Attribution, Modular Architec-
ture, Opinion Pools, Cyber Threat Intelligence, Digital Forensics

I. INTRODUCTION

Digital systems are omnipresent in our daily life. However,
threat actors exist that try to exploit these systems for their own
needs or simply to disrupt the activities of legitimate users. In
addition to prevention of security incidents, organizations may
also invest in incident detection and response [1]. If an incident
occurs despite preventive measures, digital forensic experts
can attempt to attribute these incidents to threat actors. This
process is sometimes referred to as cyber threat attribution.
The most evident use case for attribution is that it may result in
the prosecution of actors responsible for incidents. Attribution
can also contribute to establishing a proactive defense by
providing insights into the potential future steps of an attacker
using Cyber Threat Intelligence (CTI) on actors targeting
the organization [2]. Threat attribution aids in establishing
profiles of threat actors targeting specific sectors [3] and can

inform such sectors on appropriate countermeasures, including
threat hunting approaches focusing on techniques employed
by relevant threat actors to detect malicious activities before
excessive harm is caused [4].

The threat attribution process is nontrivial and is typically
performed manually by forensic experts after an incident
occurs [5]. Automatically attributing security incidents as
they happen could significantly reduce the effort required to
generate actionable intelligence. In addition, such automation
could reduce incident detection times and increase the re-
silience of organizations against Advanced Persistent Threats
(APTs). Automatic attribution might also result in additional
information for automatically generated CTI feeds.

While several proposals have been made to automate threat
attribution [2], [5], [6], these systems are not easily compared
or combined despite their similar or related goals. Current
research tackles threat attribution as a complex monolithic
problem or even as part of another problem, hence hindering
the adaptation or reuse of components. This paper argues for
an alternative and proposes a modular approach that subdivides
the attribution problem into subproblems that are addressed
separately, after which results can be aggregated using opinion
pools. Moreover, we propose an aggregation method for the
modular architecture that forms pairs of attributors based on
different indicator types.

Our main contribution is demonstrating that threat attri-
bution does not need to be tackled as a monolithic prob-
lem. On the contrary, we suggest tackling it as a modular
problem, and show how different modules may cooperate
using opinion pools. We argue that the modular approach
improves the tractability of the threat attribution problem,
increases the usability of threat attribution solutions, and aids
the interpretability of threat attribution outcomes. Moreover,
we demonstrate that these improvements can be implemented
without adversely affecting the classification performance.

To this end, related work on threat attribution and opinion
pools is discussed in Section II. Thereafter, the approach is for-
malized and its envisioned benefits are discussed in Section III.
In order to examine the viability of the proposed approach, an
experimental validation is conducted in Section IV to compare
the classifying capabilities of the proposed approach with
baselines. The section also briefly addresses the computational
complexity and illustrates interpretability through an exam-
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ple. Finally, limitations and potential enhancements of the
approach are discussed in Section V, and Section VI concludes
this work.

II. BACKGROUND AND RELATED WORK

In order to provide insights into current research relating
to threat attribution and opinion pools, the most relevant
papers are discussed below. First, Section II-A introduces
the concept of threat intelligence sharing, and describes the
threat attribution process in more detail by highlighting the
characteristics of the threat attribution process and discussing
several existing automated methods for threat attribution and
related problems. Thereafter, Section II-B provides a brief
summary on opinion pools, which are used as building blocks
for the proposed aggregation function.

A. Cyber Threat Attribution and related topics

Cyber threat intelligence and sharing: In a survey, Tounsi
and Rais define Cyber Threat Intelligence (CTI) as evidence-
based knowledge that can inform decisions concerning threats
[7]. CTI on a high level may describe the identity of threat
actors along with their goals, but may also describe low-level
observations such as Indicators of Compromise (IoCs) [8].
Standardized formats exist for CTI, such as MITRE ATT&CK
for describing the behavior of threat actors [9]. Moreover,
formats such as the Structured Threat Information Expression
(STIX) language exist to describe relations between objects
such as IoCs, techniques, campaigns, and actors [10], along
with protocols such as Trusted Automated Exchange of In-
telligence Information (TAXII) to share them [11] and open-
source implementations such as Malware Information Sharing
Platform (MISP) [12].

Threat attribution frameworks: Cyber threat attribution is
the process according to which the actors responsible for cyber
threats are determined. Rid and Buchanan proposed the Q
model, which is designed to guide investigators through the
attribution process [13]. They emphasize uncertainty in the
attribution process exist on three levels: tactical, operational,
and strategical. Questions regarding how incidents occurred,
what happened, and why they were caused play a central role
in this model. They also emphasize the importance of how
communication about the attribution process should take place.
A related contribution is a book by Timo Steffens describ-
ing several attribution methods utilizing different information
sources [14].

Pahi and Skopik proposed the Cyber Attribution Model
(CAM) to guide forensic investigators through the attribution
process while avoiding the pursuit of false-flags [15]. False-
flags are indicators left by a threat actor to evade attribution
or to evoke blame upon another entity. According to the
model, the attribution process is best understood by asking
what infrastructure was used to carry out the operation,
what capabilities the attacker must have had, and what the
motivation of the attacker could have been. Sociopolitical and
technical contextual indicators must be considered to detect

false-flags. They have demonstrated the value of the model by
applying it to the 2015 TV5Monde hack.

Skopik and Pahi later investigated what classes of informa-
tion are considered most trustworthy for attributing an incident
to a threat actor [16]. The trustworthiness was determined
by surveying several domain experts. They found that the
general Tactics, Techniques, and Procedures (TTPs), cloud
services, Command & Control (C2) infrastructure, and DNS
patterns used are the most trustworthy features for attribution.
On the other hand, traces on the dark web consistent with
technical artifacts, phishing attempts, and local malware and
their properties were considered the least trustworthy.

Automated threat attribution approaches: While attribution
models are well studied, automated approaches to establish
attribution are sparse in academic literature. Noor et al.
investigated the usage of Tactics and Techniques (TTs) as high-
level attack patterns for cyber threat attribution [5]. In order
to train a machine learning model, the TTs used by known
threat actors are collected in a correlation matrix as zeros and
ones. The authors also proposed a method for extracting TTs
from unstructured CTI documents to fill the matrix more fully,
instead of drawing from the ATT&CK knowledge base. They
compared various machine learning models, and their results
suggest that a neural network model is the most promising for
this task.

Recent efforts to automate the threat attribution process
were made by Kim et al. [6]. In their work, they used the
ATT&CK for Mobile taxonomy to perform attribution and
extracted threat intelligence concerning the used TTs from
the ATT&CK Matrix. In order to classify a sample, it was
executed in a sandbox to extract the TTs associated with
that malware sample. The techniques used for each tactic
were then expressed as a vector. The similarity between the
observed vectors and vectors from known threat intelligence
was measured to classify the samples. They utilized pairs of
IOCs instead of individual IoCs to improve precision and avoid
following false-flags.

A related contribution was made by Arafune et al. [2]. They
aim to predict the future steps of the attacker through threat
attribution using adversarial TTs. Their approach filters out
malicious traffic using a Network Intrusion Detection System
(NIDS) and extracts TTs from the selected traffic. In addition,
they used a support vector machine to predict future steps of
the assumed multistep attack. Their work shows how threat
attribution can be used to improve detection methods.

Attribution in other domains: Attribution also serves a
variety of purposes outside the cybersecurity domain. Du et
al. describe several applications of machine learning, which
they refer to as Artificial Intelligence (AI), for various finger-
printing techniques [17]. These include malware attribution,
digital message authorship attribution, and photo hardware
origin attribution. While these attribution problems can be
considered more restricted than the threat attribution problem,
they share a similar goal.

Gap analysis: The automated approaches for threat attribu-
tion we identified all view attribution as a monolithic problem,
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and the solutions they propose are not easily interoperable
or interchangeable. Moreover, black-box machine learning
models like the aforementioned neural networks can yield pre-
dictions that are difficult to interpret [18] for forensic experts,
who might instead require convincing evidence for prosecu-
tion. The proposed modular approach attempts to overcome
these problems while increasing the tractability of the threat
attribution problem. Concretely, the approach elucidates how
to perform automatic attribution based on multiple evidence
obtained from distinct attribution approaches. The proposed
approach is interoperable with existing automated solutions
such as those described earlier for threat attribution [2], [5],
[6], and may also be applicable to other types of fingerprinting
such as authorship attribution [17]. Moreover, the modular
approach draws from the CAM [15], related models [13], and
the pairing of IoC [6], and combines these on an architectural
level. Research on the trustworthiness of specific indicators
for attribution [16] can support the operationalization of the
proposed framework.

B. Opinion Pools

Opinion pools were first introduced by Stone in 1961 as
a function to make a joint decision based on the opinions
of several individuals [19]. Opinions can be modelled as a
function describing probabilities for each possible decision.
Examples of such functions are probability mass and density
functions. A Probability Mass Function (PMF) is a function
that describes the possible values of a discrete random variable
using probabilities, and a Probability Density Function (PDF)
describes the same for continuous random variables.

Koliander et al. recently conducted a survey on the fusion
of PDFs using opinion pools [20]. Formally, Opinion pools are
functions that combine K ≥ 1 PDFs into a single aggregate
PDF. These pooling functions can typically also be applied to
PMFs. Various opinion pools exist, and they differ in terms
of the desirable axioms they satisfy. In the remainder of this
work, only the linear opinion pool and the logarithmic opinion
pool are considered, although also other pooling functions
exist. In particular, the holder opinion pool is noteworthy as
it is parameterizable and can be considered a generalization
of both the linear opinion pool (α = 1) and the logarithmic
opinion pool (α = 0).

The linear opinion pool is computed as an arithmetic
average, as shown in Equation 1 where the function g pro-
duces the aggregate PDF and qk(θ) describes an input PDF.
The logarithmic opinion pool is computed as the geometric
average, as shown in Equation 2 where c is a normalization
factor. Both pools can be weighted using a factor wk for each
input PDF. For the sake of simplicity, equal weights are used
in the remainder of this work.

glinear[q1, . . . , qK ](θ) =

K∑
k=1

wkqk(θ) (1)

glogarithmic[q1, . . . , qK ](θ) = c

K∏
k=1

qk(θ)
wk (2)

III. PROPOSED APPROACH

The aim of this work is to propose an architecture that
can be used to attribute incidents to known threat actors
automatically and to support forensic experts in the attribution
process by suggesting actors who are likely responsible for in-
cidents. Before detailing this architecture, relevant definitions
are provided.

According to the NIST glossary, any observable occurrence
in a network or system is an event [21]. We define an incident
as a set of related events from which several Indicators of
Compromise can be derived. This definition is in-line with a
definition from the NIST glossary that defines an incident as
an “anomalous or unexpected event, set of events, condition,
or situation at any time during the life cycle of a project,
product, service, or system” [21]. Indicators of Compromise
(IoCs) are evidence of breach and may also be used for
attribution to threat actors. A threat actor is a malicious entity
whose actions contribute to the cause of an incident. We
define an attributor as a module that performs attribution of
incidents to threat actors. While attributors may directly use
IoCs for attribution, they can also utilize extracted features
and enrich data. For example, from domain names entropy
measures, registrar information, and resolved IP addresses may
be derived, which can all inform attribution.

When devising a system that performs threat attribution, it
is important to account for the needs of various stakeholders,
such as forensic experts, system developers, and researchers.
These needs go beyond the functional requirement that the
system attributes incidents to threat actors. Non-functional
requirements for automated approaches have been analyzed
by Habibullah et al. [22]. A goal of the proposed approach
is to account for some of these requirements. Several non-
functional requirements which the proposed approach aims to
satisfy, are discussed in detail in Section III-A.

The inspiration for the proposal draws strongly from the
fields of software architecture and software design, where
non-functional requirements play an important role and design
patterns are used to satisfy these requirements better. The most
prominently applied design patterns are the Composite and
Strategy patterns [23]. Moreover, the work by Kim et al. [6]
inspired the proposed Pairing Aggregator.

Contrary to existing solutions, the newly proposed solution
is highly modular and allows for composing attributors at
runtime. Attributors can be used interchangeably as they
implement a common interface for attribution operating on the
same data model, which consists of a single incident composed
of multiple indicators as input. Thus, when an improved
attributor is implemented, it can easily replace the previous
one. The output of the attributor interface consists of a PMF
that describes the probability of attribution to known threat
actors. An aggregator may combine predictions from different
attributors into a single prediction that is better than each PMF
produced by the individual attributors, while implementing the
same interface. The aggregator can be composed at runtime
using any collection of attributors that implement the same
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«Annotation»
Attribution
Module

«Annotation»
Data models

«interface»
Attributor

+ attribute(Incident): dict<Actor, float>

«class»
Concrete Attributor 1

«class»
Concrete Attributor 2

«class»
Actor

«class»
Pairing Aggregator

+ init(Iterable<Attributor>)

Use

«class»
Incident

«class»
Indicator

«class»
Concrete Attributor n

Fig. 1. Class diagram describing the proposed modular architecture for threat
attribution.

interface. Figure 1 shows a class diagram for the proposed
architecture. Section IV-E contains more details regarding the
input-output of the mentioned interfaces and their interplay.

The individual attributors might correspond to the infras-
tructure, capabilities, and motivation as described in the CAM
[15]. Moreover, recursion may, for example, be applied to split
the problem of performing attribution based on the infrastruc-
ture into the problems of performing attribution leveraging IP
addresses and domain names separately.

Similar to related work, the proposal also allows for au-
tomation. Figure 2 shows what such an integration could look
like. Utilizing available CTI, intrusion detection systems can
be improved with a focus on the TTPs used by the threat
actors targeting the organization, industry, or country. Alerts
can then be correlated and aggregated into incidents. All the
indicators that can be derived from the incident can then be
fed into the threat attribution module, generating additional
threat intelligence.

In order to further define the proposal, a more formal
description is provided. First, we define the set of known
threat actors T , a subset of real numbers R(0,1) = {x | x ∈
R ∧ 0 ≤ x ≤ 1}, and the set of PMFs Q = {q | q : T →
R(0,1) ∧

∑
t∈T q(t) = 1}. Consider a set of attributors A and

an incident with indicators I . Each attributor a ∈ A can be
considered a function taking a subset of indicators I ′ ⊆ I as
input and mapping this to a valid PMF qa ∈ Q indicating the
empirical probabilities of attribution to known threat actors T .
The function implemented by each concrete attributor is the
following: A : P(I) → Q1. An aggregator A is composed
of a set of attributors A′ ⊆ A and maps their output PMFs
Q′ ⊆ Q to an aggregate output PMF: A : P(Q) → Q.

Ideally, the aggregator preserves nuances present in the in-
put PMFs, indicating uncertainty in the attribution. Therefore,

1P is used to denote the power set.

Cyber Threat
Intelligence

Network Intrusion
Detection System

Alerts

Incident Detector

Incidents

Threat Attributor

Attributed
Incidents

Pre-existing
processing step

Newly introduced
processing step

Multiple data class
instances

Knowledge base

Host Intrusion
Detection System

Network Traffic Host Event Logs

Fig. 2. Workflow how the proposed threat attribution approach is related to
other areas of research such as intrusion detection systems.

a majority vote, for example, could be considered unsuitable.
Moreover, if the input PMFs are more contradictory, the
output PMF should express a larger degree of uncertainty.
This property is satisfied by the linear opinion pool. Another
desirable property for the aggregator is that it separates the
likely and unlikely outcomes, such that automatic attribution
might take place using a clear threshold. This property is
satisfied by the logarithmic opinion pool. [20]

In order to aggregate the output of the individual attributors,
a Pairing Aggregator is proposed with the aim of satisfying
these characteristics and increasing the resiliency against false-
flags. The underlying idea for this aggregator is that the attribu-
tion precision can be improved by inspecting multiple indicator
types simultaneously. First, the Pairing Aggregator forms pairs
of attributors and combines their PMFs using a logarithmic
opinion pool, after which the intermediate PMFs are combined
using a linear opinion pool to derive the aggregate PMF. More
formally, consider the set of input PMFs Q′ resulting from
concrete attributors A′. The pairing attributor forms pairs P
according to Equation 3. It then produces intermediate PMFs
R according to Equation 4 using logarithmic opinion pools,
after which the final aggregate PMF is computed according to
Equation 5 using a linear opinion pool.

P = {(q1, q2) | q1, q2 ∈ Q′ ∧ q1 ̸= q2} (3)
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R = {glogarithmic[x, y] | (x, y) ∈ P} (4)

glinear[r | r ∈ R] (5)

A. Benefits
Three main benefits offered by the proposed approach have

been identified. These pertain to the tractability of the threat
attribution problem, to the usability of conducted research and
developed solutions, and to the interpretability of the results.
The modular architecture is approach-agnostic in the sense that
related work can be integrated into the proposed architecture
as concrete attributors. Since it is challenging to evaluate
these benefits numerically, we provide arguments for why the
modular approach offers advancements in these three areas.
Complementing these arguments, the experiment described in
Section IV aims to compare classification capabilities with
baselines and provides an example to highlight interpretability.

1) Tractability: Purao formulated that research problems
should be tractable, implying their scope should be small
enough to solve [24]. One may argue that threat attribution on
its own is intractable so far. Rid and Buchanan also highlight
the complexity of the threat attribution process and even name
it “an art” [13]. Hence, the need for decomposing the problem
into more tractable problems exists.

Similar to the divide and conquer approach from algorithm
design [25], the proposal is to split the problem of how to
attribute incidents into smaller problems that are easier to
solve. Instead of addressing the complete problem, researchers
can, for example, focus on problems such as how to attribute
an incident based on observed domain names. These smaller
problems can be easier to solve, and can later be used to
address the larger problem by combining the solutions to the
subproblems. The decomposition could be derived from threat
attribution models such as the CAM [15].

2) Usability: Moreover, researchers might find themselves
working on distinct subproblems whose solutions can cooper-
ate by leveraging the modular approach, as opposed to com-
peting for the best solution to the overall problem. Research on
software reuse indicates that smaller modules have the largest
chance of being completely reused [26]. Enabling reuse should
be considered a goal in research to enable cooperation and
support future research.

From an operational perspective, the concrete attributors
from the modular approach can be considered building blocks
for other components which can be constructed by means of
composition. Reuse of software is encouraged since additional
modules can easily be added to extend an already existing
system. Hence, the modular approach also enables interoper-
ability between existing threat attribution solutions. Moreover,
maintainability benefits from modularity—replacing a single
module does not introduce the need to decommission the
whole system since a module can be effortlessly replaced if
it implements the same interface. Another benefit in terms
of usability is that the modular approach allows for the
parallelization of concrete attributors. This parallelization is
even supported across different devices due to the portability
of the decoupled modules.

3) Interpretability: The modular approach has the addi-
tional benefit that it naturally enables interpretability and
provides some sort of provenance. Explainability of machine
learning has received increased attention in recent years [27],
stressing the importance of interpretability. The ability to
understand why an automated attribution system suggests
a certain threat actor is crucial if forensic experts intend
to follow up on automated outcomes and build a case for
prosecution to hold responsible threat actors accountable for
their actions. If, instead, interpretability were lacking, the
technical model did not help at all and the experts would have
to start from scratch despite an attempt at automation. It should
also be noted that PMFs are useful for interpreting attribution
outcomes in the case of incidents where multiple actors are
involved, such as the case where a threat actor distributes
malware through a service provided by another actor [28],
because a PMF may suggest several actors.

The modular approach aids interpretability due to its trans-
parent structure. If each module performs a fixed small task
and intermediate results for the attribution process are avail-
able, it is naturally clear which indicators contribute to the
attribution outcome of an incident. For example, if a module
that performs attribution using domain names and a module
using TTPs both agree with the final attribution, it is clear that
these features contribute to this result. Section IV-E further
elaborates on the interpretability using example output.

IV. EXPERIMENTAL VALIDATION

In order to assess the potential value of a modular approach,
an experiment is conducted to compare the modular approach
with monolithic approaches. The goal of the experiment is
to compare the classification capabilities and runtimes of the
modular approach with the monolithic alternatives. First, the
experiment design is described in Section IV-A. Thereafter,
a detailed description of the used dataset is provided in
Section IV-B. The results of the experiment are presented
and discussed in Section IV-C. The computational complexity
of the proposed solution is assessed in Section IV-D and a
practical example of the output is interpreted in Section IV-E.
The source code used to conduct the experiments is made
publicly available to enable reproducibility.

A. Experiment design

To the best of our knowledge, no good public dataset exists
for studying threat attribution 2. Prior work has either scraped
the internet [2], [5], or used labeled sandboxed malware exe-
cutions [6]. The representativeness of each of these methods is
imperfect, and a perfectly representative dataset is unachiev-
able due to the adversarial nature of the domain. Since the
experiment aims to validate the architecture instead of concrete
attributors, a simple artificial dataset with 8 non-stationary
features is generated with the aim of capturing the essence
of how cybersecurity incidents occur in practice. Each feature
can be considered to describe a group of related facts that can

2The sources queried include IEEE DataPort and Kaggle.
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be derived from an incident. A total of 392 577 incidents is
derived from 128 generated threat actor profiles. The features
of an incident are sampled according to the profile of the
responsible threat actor, which changes over time. Moreover,
actors may try to evoke blame on others by leaving false-flags
that are associated with a different threat actor. A detailed
description of the procedure to generate this dataset is given in
Section IV-B, which also includes several descriptive statistics
on the dataset. The dataset captures the various complexities
encountered in the threat attribution process sufficiently well
to allow for comparing classifier performance without the
intention of drawing conclusions relating to the performance
of a specific classifier in practice.

The experiment consequently compares the modular ap-
proach with a complex monolithic solution. The eXtreme
Gradient Boosting (XGBoost) classifier [29] was chosen as
a baseline to represent the monolithic approaches, since XG-
Boost is known to perform well on a variety of tasks and can
outperform more complex deep neural networks [30]. This
classifier was implemented3 with 1 000 estimators.

For the modular approach, one concrete attributor is im-
plemented for each of the features. The concrete attributors
are implemented4 as Linear Support Vector Machines (SVMs)
operating only on a single feature. Consequently, the Pairing
Aggregator described in Section III is used to combine the
individual results into a final PMF. The proposed aggregator
is also compared with the standalone linear and logarithmic
opinion pools. In addition to XGBoost, a Linear SVM is also
implemented operating on all features as a representative for
the monolithic approaches.

Since the attribution framework is meant to support forensic
experts and should suggest the most probable responsible
threat actors, the top k-accuracy score is used to evaluate
the various alternatives. The top k-accuracy for a sample is
computed as the smallest k for which the responsible actor
is among the top k most probable outcomes of the resulting
PMF. In addition, we compute the precision and recall, which
are defined respectively as the fraction of correctly attributed
incidents among the attributed incidents and the fraction of
correctly attributed incidents among the incidents that could
be attributed correctly with a sufficiently high threshold. Using
these metrics, the micro-averaged Precision-Recall (PR) curve
is shown for the various alternatives, and their optimal F-
measures are computed.

B. Simulated dataset generation

In order to obtain a suitable dataset, a dataset of incidents
caused by threat actors is simulated using s = 100 000 time
steps. The first s

2 time steps are used as training data, while
the remaining time steps are used as test data. Each incident

3Where unspecified default parameters were used in combination
with objective=’multi softmax’ for https://xgboost.readthedocs.io/en/stable/
parameter.html

4Default parameters were used in combination with kernel=’linear’ and
probability=True for https://scikit-learn.org/1.2/modules/generated/sklearn.
svm.SVC.html

in this dataset is abstractly described by m = 8 numerical
features. Categorical features such as those describing the use
of specific TTPs can also be represented through, for example,
one-hot encoding. First, profiles are created for t = 128 threat
actors. Each threat actor i, with 0 ≤ i < t, has an activity
rate ai ∼ U(0.0001, 0.1)5, which represents the probability
that the threat actor causes an incident at the given time step.
Each threat actor i, with 0 ≤ i < t, commences their activities
at si start ∼ U(0, 0.4s) and ends their activities at si end ∼
U(0.6s, s). This corresponds to the expected behavior that new
actors can occur over time and others cease to operate as they
are, for example, prosecuted. Moreover, each actor i, with 0 ≤
i < t, has feature means xi j µ ∼ U(−1, 1) and features
standard deviations xi j σ ∼ U(0, 1

t ) for each feature xi j

with 0 ≤ i < t and 0 ≤ j < m.
At each time step and for each threat actor i, with 0 ≤ i < t,

an incident is generated with probability ai. The features repre-
senting the incident are sampled like xj ∼ N (xi j µ, xi j σ)

6

for each feature xi j with 0 ≤ i < t and 0 ≤ j < m.
For each of the features, with probability 0.4, the feature
value in the test data is replaced by a false flag randomly
chosen from the feature values of a different actor in the
already generated training data. Moreover, to simulate a degree
of non-stationarity in the behavior of the threat actors, at
each time step, the feature means shift with xi j µ shift ∼
N (0, 0.01) and the feature standard deviations change with
xi j σ shift ∼ N (0, 0.01) for each feature xi j with 0 ≤ i < t
and 0 ≤ j < m. Similarly, the activity level ai of each
threat actor i, with 0 ≤ i < t, changes every time step with
ai shift ∼ N (0, 0.01) The resulting dataset includes both prior
probability shift and concept shift, which are different forms
of dataset shift [31]. Hence, the resulting dataset describes a
nontrivial problem for machine learning approaches.

After generation, the final dataset consists of 392 577
samples with 8 distinct features belonging to 128 classes
representing different threat actors. To characterize the dataset,
we highlight several aggregate statistics. Figure 3 shows the
distribution of the number of incidents associated with a
threat actor, which is influenced by the different activity levels
of various threat actors. The figure shows that there is an
imbalance in the sense that most threat actors have a lower
number of incidents associated with them, whereas only few
threat actors have a high number of incidents associated with
them. Figure 4 shows how the activity levels of the first four
threat actors vary amongst each other and over time.

C. Results

The results of the conducted experiment are shown in two
figures. Figure 5 shows a cumulative distribution plot depicting
the proportion of samples where the correct actor is among
the top k most probable outcomes. A steep incline on the
left of the figure indicates the best performance. Figure 6
shows precision-recall curves for the various attributors and

5U is used to depict a uniform distribution.
6N is used to depict a normal distribution.
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Fig. 3. Combined histogram and kernel density estimation, depicting the
distribution of the number of incidents associated with a threat actor.
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Fig. 4. Kernel Density Estimations (KDE) for the number of incidents
associated with the first four threat actors over time.

their corresponding optimal F-measures. The most desirable
F-measures are located at the top-right of the figure.

The curves corresponding to the opinion pools in Figure 5
are more closely located towards the top left of the figure com-
pared to the monolithic alternatives. This implies that the list
of most probable threat actors best corresponds to the actual
responsible threat actor for the modular approach. Hence, the
modular approach appears to provide the most useful results
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Fig. 5. Cumulative distribution plots depicting the proportion of samples
where the correct actor is among the top k most probable outcomes for the
various alternatives.
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Fig. 6. Precision-Recall curves for the various alternatives and their corre-
sponding optimal F-measures.

for forensic experts who continue an investigation using the
aggregate PMF. While XGBoost has more samples with a low
k-accuracy than the linear SVM, it has fewer samples for
which the k-accuracy indicates the responsible threat actor is
among the top half of most probable threat actors according
to the prediction. Nevertheless, the ensemble of the simple
models in the modular architecture achieves better k-accuracy
than the monolithic alternatives.

Moreover, Figure 6 shows that the Pairing Aggregator can
obtain excellent precision while maintaining acceptable recall
levels. Although it obtains a slightly lower F-measure than
the logarithmic opinion pool where the F-measure is optimal,
the F-measure obtained by the Pairing Aggregator is higher
than that of the monolithic solutions such as XGBoost or the
single linear SVM. The Pairing Aggregator can also obtain the
highest overall precision, suggesting it is more resilient against
the presence of false-flags. Although XGBoost outperforms
the linear SVM, the alternatives representing the modular
approach outperform both monolithic alternatives.

D. Computational complexity

While the runtime of the attribution solution is highly
dependent on the chosen underlying machine learning model,
we can compare the practical runtime of the modular approach
with the monolithic approach where the underlying model is
the same or where the performance is comparable. Moreover,
we can perform an analysis of the computational complexity
where the computational complexity of the underlying model
is a parameterized function.

Let O(r(n, d)) denote the computational complexity of the
underlying machine learning model, where r is a function with
n and d as parameters. Parameter n refers to the number
of incidents and d refers to the dimensionality resulting
from the number of features available to the model. When
using the same underlying model, it is both reasonable and
conservative to assume O(r(n, d̂)) ≤ O(r(n, d)) where d̂ ≤ d
[32]. The runtime required for pooling K PMFs describing
probabilities for t threat actors is bound by O(Kt) basic oper-
ations requiring constant time using a floating-point arithmetic
implementation.
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Fig. 7. Runtimes of the various alternatives during training and prediction.

The proposed pairing aggregator will use at most d models
if an attribution module is constructed for every feature.
As a result, the logarithmic opinion pool will be applied
at most d2 times, followed by a single application of the
linear opinion pool for every incident. Therefore, the com-
putational complexity of the Pairing Aggregator is given
by O(d · r(n, d) + nd2(dt) + n(d2t), which simplifies to
O(d · r(n, d) + nd3t). Therefore, the aggregation method is
linear with respect to the number of incidents and threat actors.
The opinion pools are only applied when making predictions,
and the computational complexity during training is therefore
limited to O(d · r(n, d)).

While the above-described computational complexity pro-
vides a conservative upper bound on the runtime, Figure 7
shows the practical runtime obtained during the execution of
the experiment described in Section IV-A. These results were
gathered on a laptop equipped with an INTEL I7-11800H
and 32GB of RAM, with minimal utilization irrelevant to
the experiment. All alternatives were executed using a single
process. The results indicate that some computational overhead
is introduced by the multitude of modules, each running a
machine learning model in comparison to the Linear SVM as
a baseline, but also indicate that the overhead is not much
more than that of more complex models such as XGBoost.
Moreover, the runtime required for aggregating predictions
using opinion pools is negligible in comparison to the runtime
required for gathering predictions from individual modules.

E. Interpretation of the output

To highlight how the Pairing Aggregator works in practice
and how the modular architecture aids interpretability, we
use a generated dataset following a method similar to what
is described in Section IV-B but with only 3 threat actors
and only 3 features. Each vector in Figure 8 represents a
PMF and depicts the probability of attribution to the threat
actor corresponding to the index under consideration. For
example, the probability of attribution towards threat actor t0
is 0.01 in the top-left vector, representing the model output
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Fig. 8. Example of how outputs from individual attribution modules are
combined using the Pairing Aggregator.

corresponding to feature f0. The top layer of vectors represents
the output obtained from the individual attribution modules,
and the arrows show how these are combined to produce
the intermediate results as described in Section III. The final
output of the Pairing Aggregator is given in the bottom layer.

According to the ground truth corresponding to the example
shown in Figure 8, threat actor t2 is responsible for the
corresponding incident. From the output of the individual
modules, it becomes clear that features f0 and f2 point in
the direction of t2, whereas feature f1 suggests threat actor
t1 is responsible instead. Feature f1 can be considered a
false-flag in this incident since it misleads forensic experts.
Applying the logarithmic opinion pool results in a PMF with
high probabilities for the actors on which all input PMFs
agree and lower probabilities for the threat actors on which
they disagree. A good example of this effect in Figure 8 is
given by the combination of the output from the attribution
modules operating on features f0 and f2, which agree on
the most probable outcome but disagree on the alternatives.
The resulting intermediate result has a significant probability
of attribution to the threat actor on which the input PMFs
agree. After the application of the linear opinion pool, the final
outcome of the Pairing Aggregator demonstrates uncertainty
since both attribution to actor t1 and t2 are likely. As a result
of the interpretation, a forensic expert may further investigate
the feature f1 to verify its applicability for attribution of this
incident.

V. DISCUSSION

Below, a discussion of the conducted work is presented.
It is divided into two sections. First, the limitations of the
proposed modular approach and the conducted experiments
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are discussed in Section V-A. Thereafter, potential extensions
and enhancements that leverage this work are suggested in
Section V-B.

A. Limitations

While the proposed modular architecture seems promising,
it is important to consider its drawbacks and limitations. First
and foremost, the modular approach actually introduces a
new problem because the combination of the PMFs of the
individual modules may not be straightforward. This does not
only apply to the aggregation function itself but also to the
optimal structuring of components. Furthermore, in certain
scenarios, it might be the case that a monolithic solution
achieves better performance, although the conducted experi-
ment demonstrates the modular approach may also outperform
monolithic alternatives.

In addition, we should consider the possibility that the
simulated data used for the experiment is unrepresentative
of real-world data. Distributions followed by real features
may not follow a normal distribution, and may even have
interdependencies with other features. Moreover, all indicators
in this simulation had a strong correlation with the responsible
threat actor, which may not be the case in practice. Hence,
the reported performance scores should only be considered in
order to establish a comparison between the alternatives and
not to derive conclusions about the performance of concrete
attributors in practice.

B. Future work

The approach proposed in this work might be extended or
improved in several ways. For an implementation, the modular
architecture might be applied recursively. This can, for exam-
ple, be done by splitting the problem of attribution based on
network observables into the problems of attribution based on
specific network protocols. Similarly, attribution based on the
motivation might be split into attribution based on the type of
organization targeted, and the type of actions performed after
access was obtained (e.g., information exfiltration, demand for
ransom, destructive operations).

Moreover, the aggregation function could be further studied
and possibly improved. In specific, different aggregation func-
tions might be suitable depending on the types of attributors
providing input to the aggregator and the relation between
these attributors. The desirable properties for such aggregation
functions might be specified in the form of axioms, similar
to those discussed in [20]. Weights might also be applied
to the pooling functions utilized by the aggregator based on
the trustworthiness of the indicator types used for attribution,
as investigated in [16]. Another important consideration for
weighting the opinion pools is that it may be used to reduce the
susceptibility to redundant or dependent features. More arbi-
trary aggregators based on machine learning models might also
be possible, although these may decrease the interpretability.

Another potential improvement point is the simulation,
which is an abstraction of real-world processes. Improvements
to the simulation might provide new insights or support testing

concrete attributors. Alternatively, the framework might be
tested using a real-world dataset or by testing its usability
or interpretability in practice in cooperation with forensic
experts. This would, however, require concrete attributors to
be implemented first.

VI. CONCLUSION

The experiment performed in Section IV demonstrated
that the modular approach using opinion pools described
in Section III offers a viable alternative to a monolithic
approach. The modular approach may make the threat attri-
bution problem more tractable whilst increasing the usability
and interpretability of the threat attribution solution without
reducing precision.

By making the source code 7 used to conduct the ex-
periments publicly available, we invite other researchers to
experiment with improved simulations, different data, or novel
methods for attribution following the proposed architecture.
Specifically, the limitations and possible enhancements dis-
cussed in Section V may be considered.

To summarize, the presented modular approach contributes
to the effective attribution of digital incidents to threat actors.
The architecture allows for the definition of more tractable
problems that can contribute to usable and interpretable ad-
vancements in the area of threat attribution. On a societal
level, attribution may result in prosecution and more effective
defense strategies. Overall, the presented work contributes to
increased digital security.
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