Internet transparency through
multi-party computation

Pawet Mackowiak and Fernando Kuipers

TU Delft, Delft, the Netherlands
{p.mackowiak@student.,F.A.Kuipers@}tudelft.nl

Abstract. The inability to check how our Internet traffic is being han-
dled and routed poses all kinds of security and privacy risks. Yet, for the
typical end-user, the Internet indeed is such a black box. In this paper,
we adhere to the call for an Internet that is more transparent, and as a
step forward we propose a mechanism that carefully balances the desire
to share transparency information with the necessity to not expose all in-
ternal details of a network. We realize this by building on the framework
of multi-party computation. Our architecture and corresponding proof-
of-concept is evaluated via experiments and demonstrates the feasibility
of our concept to improve Internet transparency.

1 Introduction

The Internet is of vital importance to our modern society, yet — to its end-users
who generate and receive network traffic — it provides limited transparency and
hardly any control regarding how user-traffic is processed.

In this paper, transparency relates to the level at which a user is able to
see how their network traffic is being processed. Following such transparency,
control refers to the level to which end-users are able to determine or convey
how their traffic should be handled by networks.

Technologies like Virtual Reality (VR) or the Tactile Internet are extremely
resource-intensive and resource-sensitive [16], which means that poor Quality-of-
Service (QoS) directly affects the Quality-of-Experience (QoE). Providing QoS
over multiple domains is especially challenging. In many cases, different network
domains are administered by different entities, which significantly complicates
the ability to collect performance measurements and data on resource alloca-
tion. As a result, supervision (and hence transparency) becomes ineffective and
sometimes even impossible. In an ideal world, it would be sufficient to draw up
a number of agreements between Internet Service Providers (ISPs) and domain
administrators in order to ensure that sufficient resources are always available.
Unfortunately, in practice and because of the complexity involved in networking,
this has not been realized.

Even within a single domain, once an anomaly has been observed, further
diagnostics are needed to properly understand what has happened. This means
labor-intensive network administrator intervention. Such diagnostic efforts greatly

2 P. Mackowiak and F.A. Kuipers

increase when multiple domains are involved, making it even harder to find the
root cause of network and service problems. In some cases, this results in situa-
tions where the domains’ administrators claim that other parties are responsible
for a certain service disruption. Clearly, to provide end-users and domain ad-
ministrators with more network-related insights poses a non-trivial challenge;
a solution is needed for multi-domain supervision and transparency of network
services and devices, which does not compromise the security of the involved do-
mains nor discloses any competitive network information. This paper contributes
to solving that challenge, thereby leveraging existing and novel telemetry proto-
cols and technologies.

The structure of this paper is as follows: Section 2 presents our architecture
along with a Proof-of-Concept (PoC) implementation. This PoC is experimen-
tally evaluated in Section 3. Section 4 presents related work and we conclude in
Section 5.

2 Design of a multi-domain network telemetry system

The first part of this section will present our design goals and further consider-
ations. Subsequently, the proposed approach will be presented, followed by the
description of the Proof-of-Concept (PoC) developed by us.

2.1 Design goals and considerations

The main design goal is to offer users greater transparency, i.e., to give them in-
sight into how the network traffic generated by these users and their applications
is processed. In addition to this high-level goal, the objectives further detailed
in the following are to propose a modular, easy-to-adopt system that will enable
users to securely share transparency data.

Goals In creating a system to provide third parties with (controlled) access
to network characteristics, the question arises of how to balance the amount of
information provided versus the security of the infrastructure they describe. The
information provided may include details about the devices included in the in-
frastructure (manufacturer of the device, software version, relations with other
devices in the stack), details about the processing of network traffic, such as
the exact path travelled, the associated delays, and resources used, and even
other types of information, such as its energy profile. However, openly disclosing
such information could enable malicious actors to more easily identify vulnerable
points in the network, which on its turn may significantly accelerate potential
attacks on the network. While one could argue that fast-paced patching or decep-
tion technologies! may reduce the risk of such security incidents manifesting, this

! Deception technologies refer to cyber security defence mechanisms that facilitate
early threat detection and enhanced incident response by means of deploying
fake/misleading targets in the network.

Internet transparency through multi-party computation 3

(1) General description T

(2) Network telemetry description

End user Networking device MPC Node Web service

= = = -
= User traffic_
[%) - =19 J

Fig. 1. High-level overview of the proposal with two types of description.

is countered by the increasing levels of automation that may significantly accel-
erate the occurrence and execution of potential attacks. Similarly, the provision
of sensitive data describing how ISPs operate may also impact their competi-
tiveness. It is therefore important to deploy a mechanism that allows to securely
share transparency information with trusted users. It is outside the scope of this
paper to indicate what information should or should not be disclosed. But we do
make it an objective to allow secure information sharing as an important step
towards a responsible Internet.

Furthermore, the complexity of adopting the solution has a direct impact on
the desire to use it. If a better level of transparency requires operators and users
to use a particular type of equipment, the pace of adoption may be too slow to
create impact. An appropriate level of modularity will enable the collection of
data from various types of devices, which will allow more users to benefit from
such a solution.

2.2 Design proposal

This section will describe the system design process and the accompanying deci-
sions resulting from the goals described in the previous section. The process will
be described from top to bottom, i.e., first the part of the proposal responsible
for analysing and processing data between domains will be described and then
the elements responsible for providing data to the top part will be discussed.
In Figure 1, a high-level overview of the system is presented. As shown in
that figure, the initiator of the data sharing process is the end-user, who can
ask for two types of description. The first one is a general description summa-
rizing how network traffic is processed by the domain, similar to security audits
conducted within the Cloud Security Alliance STAR framework [11]. It may in-
clude information such as a description of services that process the traffic (e.g.,

4 P. Mackowiak and F.A. Kuipers

DPI, Encryption, DNS), a description of infrastructure processing the traffic
at the data-plane and control-plane levels (both software and hardware), the
ability to perform measurements on this traffic (data-plane telemetry), support
for additional security functions (e.g., DNSSec, DoH), peering relations that are
directly related to the path of traffic, or under whose jurisdiction the domain
operates. Such a description allows the user to verify that the service provided
by the domain meets their requirements/norms/standards. The second type of
description results directly from the type of measurements that domains declare
they can offer, along with the results of those measurements. As a result of this
description, the user can see values such as the processing time of their traffic
at different levels of granularity (from a single device to a domain summary) or,
for example, the use of resources.

As can be seen from the description of the functions presented above, the
user, whether it is an end-user or another service provider, could retrieve a great
deal of information about the internals and functioning of the domain they are
requesting transparency information from. To avoid such information leaking to
malicious entities, he system could be designed using a client-server architecture
model, in which the user, if necessary, would obtain encrypted data directly from
the server, assuming that (s)he has appropriate permissions. One other approach
could be to use a peer-to-peer model, where peers would encrypt the data as part
of a protocol for exchanging information between themselves. Unfortunately, in
both cases, there still is a risk that a malicious actor could impersonate an entity
with privileges to obtain data, consequently, accessing shared information. This
may be the case when a malicious insider [12] is involved or an active persistent
threat manifests and compromises the system.

We have therefore decided to base our proposed architecture on secure multi-
party computation (MPC). MPC allows to carry out a computation without the
actual data being shared with the entities participating in the calculation. As a
result, entities involved in the exchange will only receive the result without the
possibility of gaining access to sensitive information that could jeopardise the
security of many. In addition, many MPC frameworks use public key infrastruc-
ture (PKI), which allows to validate the authenticity of the data provided for the
calculation. In order to successfully utilize MPC, it is necessary to design the to
be calculated functions in such a way that the result of those calculations does
not include/leak information about the system from which the data originated.
In our architecture two function types corresponding to two description types
are specified.

The first type of function (general description) is the ability to check the
requirements of the user against the domain. The input data for such a function
would be a list of requirements that the user has. The result of such a function
can help determine whether the requirements are or will not be met, which may
allow the user to decide to change the domain being used to transfer traffic or
renegotiate the way it is processed.

The second type of function (network telemetry description) is to provide
information on the use of the infrastructure, and also to examine measurement

Internet transparency through multi-party computation 5

data that will allow to achieve the effect of end-to-end measurements without
violating the iOAM standard [8]. The input data for such a function would be
the measurement data, and an example of the result — as used in our Proof-of-
Concept (PoC) — is the sum of all the delays or the argmax function, which may
allow to determine the bottleneck.

In the context of providing data for the implementation of the MPC proto-
col, it is necessary to define the scope of the domain, from which descriptive and
measurement data originate. In our proposal, we postulate that from the point
of view of the user using the system, it is important to limit the complexity of
the system by minimising communication patterns (e.g., limiting the number of
involved parties). For example, if the end-user would like to obtain a description
from an operator who outsources part of their operations, it would be the oper-
ator’s responsibility to obtain data from the entity to which its operations are
outsourced, in order to eliminate the need for the end-user to make additional
contact with such entities. Therefore, we propose to define domains based on
the maintenance domain hierarchy from protocol 802.1ag. The user using the
system would only communicate with a domain one degree lower in the hierar-
chy. Furthermore, the maximum number of entities that could participate in the
data exchange would be determined by the number of domains of lower level
contained within the customer level.

As for the granularity of the data originating from domains, it could vary
depending on the function performed, and should meet user expectations. The
level of granularity could range from summaries over a whole domain to per-
device information.

The next design aspect is how to transfer data to the MPC protocol. The
variety of available measurement technologies and the way of obtaining data from
devices significantly limits the possibility of introducing and using one standard.
Therefore, in our solution, a message broker is used to resolve this difficulty, as it
mediates communication among applications, minimising the mutual awareness
that is necessary to exchange messages successfully. Another advantage of the
message broker is that most of the open-source brokers have an API for many
languages, such as Java, C/C++ or NodeJS, which allows the creation of a simple
extension of the devices’ functionality with the possibility of sending messages.

2.3 Proof-of-Concept details

This section will explain how we implemented our Proof-of-Concept.

Building blocks Within the framework of the proposal described in the pre-
vious section, three main elements can be distinguished. These are (1) the net-
working device that is extended with functionality to report telemetry data to a
message broker, (2) the message broker itself, and (3) the module responsible for
executing a specific function using MPC and obtaining data from the message
broker.

The most important of these elements is the MPC framework, which forms
the core of our solution. Due to the recent interest in this field, many frameworks

6 P. Mac¢kowiak and F.A. Kuipers

Supported Supported N Tast
threat model data types General support major update

Documentation,
Example code, 8/2020
Open source
Partial documentation,
Example code, 10/2018
Open source
Documentation,
Semi-honest, | Fixed/Arbitrary integer, Online Support,

Fix and Arbitrary integer,

Frigate[7] N/A Array

Fixed integer, Float,

CBMC-GC[14] N/A Boolean, Array

SCALE-MAMBAI[15] |\ icious Float, Array, Struct Example code, 03/2022
Open source
Fixed integer, Boolean Partial documentation,
Wysteria[6] Semi-honest ’ ’ Example code, 10/2014

Struct
rue Open source

Table 1. Comparison of the general-purpose MPC frameworks supporting two or more
parties.

have been released. Available frameworks can be divided into two main groups:
specialised frameworks and general-purpose frameworks. The main distinguish-
ing features of these groups are the functions offered and their performance. In
the former case, the developers focus on the realisation of a specific function
and thus try to optimise the performance of their solution for said functionality
[9]. The latter group aims at providing a framework that allows for any compu-
tation that can be realised within the offered features. General-purpose frame-
works tend to be more regularly maintained, which in the long run also improves
their performance. In addition, the protocols performed by these general-purpose
frameworks are typically described using high-level languages, which benefits its
ease of adoption.

In consideration of the above, a general-purpose framework was chosen for our
PoC implementation. Among the available general-purpose frameworks, many
differ in terms of the number of supported parties, the security model, and the
general expressiveness of the high-level language that is used in the framework.
The number of parties involved in the execution of these functions could be
greater or equal to two. In Table 1, a comparison of the frameworks is presented.

As shown in the table, of the available frameworks, only SCALE-MAMBA
provides support against the malicious threat model. According to the docu-
mentation provided by the authors, this solution has no support for logical op-
erations (resulting from lack of Boolean variables), which should eliminate it in
view of the first of the two functions described in Section 2.2. However, during
our evaluation of that framework, we found that the appropriate use of bitwise
operations allows overcoming the lack of these logical operations (e.g., a maxi-
mum value is calculated using the following expression: z — ((z —y)& — (z < y))).
Hence, we selected SCALE-MAMBA.

The next building block is the message broker. There are many open-source
brokers available, which differ widely in characteristics. Important features that
should be taken into account when choosing a broker are high availability, guar-
anteed delivery and delivery acknowledgement, and how developer-friendly the
broker is. Among the brokers that meet these requirements, the following are
most popular: Apache Kafka [1], RabbitMQ [2], and ZeroMQ [3]. Their pop-
ularity implies better support and ease-of-use and, consequently, matches our

Internet transparency through multi-party computation 7

e.103 MPC-Network 172.16.10.0/24 116

DOMAIN 1 - 172.16.1.0/24 DOMAIN 2 - 172.16.2.0/24 DOMAIN 3 - 172.16.3.0/24
MPC Node Data Collector Networking device Telemetry Analytics Engine User traffic End user
AT e >
- Y = o)

Fig. 2. Overview of the PoC implementation.

objective in terms of adoption potential. From these three, Apache Kafka stands
out in one feature. Namely, it has the ability to reproduce messages. In the
case of many other message brokers, once a message is consumed it might not
be repeated. Yet, this is an important feature for validating the authenticity of
the data presented for computation. Hence our choice for Apache Kafka. More-
over, Kafka uses a pull-based approach. This allows for on-demand data analysis,
which increases the flexibility of our proposal. Finally, many programming lan-
guages have dedicated modules to communicate with the Kafka broker, which
again aids its adoption potential.

The PoC development process was carried out in an OpenStack-based cloud
platform. As can be seen in Figure 2, the PoC consists of three independent
domains and a separate network used for MPC communication. Each domain
includes several telemetry-enabled network devices, a message broker, and an
MPC node extended with software for providing data and supervising protocol
execution. In each of the domains, during operation, the delay between switches
is monitored (the delay value includes the delay due to port queuing, packet
processing, and link delay). This delay is then reported and made available for
multi-domain analysis. In the PoC, three types of analysis were conducted on
the gathered data. These types are further discussed in the following section.
In the PoC, the edge domains (i.e., 1 and 3) are the same in terms of used
telemetry technology, while the middle domain differs. The edge domains consist
of a Mininet network with two switches and two hosts, where the switches in
the network each are an OpenFlow-enabled Open vSwitch (OvS). A RYU SDN
controller manages the network. In the beginning, a flow traversing the switches
is initialised, which then triggers monitoring of the link between them. The
latency of the link between the switches is varying and ranges from 15 to 50 ms,
as can be seen in the later analysis with MPC. Since, in this network set-up, the
controller gathers the telemetry data, it sends the delay measurement results to
the broker.

8 P. Mac¢kowiak and F.A. Kuipers

The middle domain is based on the FD.io VPP telemetry solution [13]. In
this domain, the telemetry data is encapsulated in the packet using an iIOAM
hop-by-hop header extension as it enters the network name-space. This action is
executed by an iOAM encapsulation node. As the packet traverses the network
the iIOAM transit nodes add additional telemetry information. The telemetry
data is removed as it is leaving the name-space, via an iOAM decapsulation node.
The data is then polled by a telemetry collector allocated in the network and
reported to the broker. The delay is being deducted from the Timestamp Trace
type, which is a 32-bit value that represents the timestamp with ms accuracy.
Moreover, if the MPC function provides for such an analysis, it is possible not
only to monitor network conditions, but also to monitor the use of resources
utilised to generate network traffic (e.g., a VR application). Figures 3 and 4
display two console screenshots illustrating the MPC execution.

Figure 3 presents the initialisation of domain 1. In Figure 4, a console view
of the MPC execution is presented. The red boxes highlight the first iteration
of the MPC execution. It can also be seen in the figure that only one of the
three domains participating in the calculations gets the results of it. This is
intended behaviour, as described in the code of the protocol execution available
in Appendix A.

couple of seconds to mininet time to come up

00, nw_ds

Fig. 3. Console view of domain 1 initialisation. The view includes three windows. Top-
left represents the Mininet output, top-right the ping initialised by the end-user, while
the bottom view presents the results from network telemetry.

Internet transparency through multi-party computation 9

in online thread @

Fig. 4. Console view of the data analysis execution. The view includes three windows
that correspond to the domains. In the red box, the first analysis iteration is marked.

3 Performance Analysis

3.1 Testbed

While the original PoC was developed using Docker containers, the performance
analysis was conducted with Virtual Machines that provide better resource sep-
aration. This decision was made on account of the fact that SCALE-MAMBA is
a framework with a high demand for resources. For a PoC this is fit for purpose,
but for a real-life implementation, a scalable MPC framework should be selected
or developed. For our experiments, three to eight virtual machines were used.
The hardware resources allocated to each of the virtual machines were equal:
four virtual cores E5-2683 of Intel Xeon CPU running at 2.1 GHz with 16384
KB cache and 8 GB of RAM. The network is organised in a star topology: the
Virtual Machines are all connected to an instance of OvS that operates on the
hypervisor. All hosts were connected to each other with a 15 Gbps emulated
network interface (the bandwidth of the link was measured using iperf), and de-
fault link latency of approximately 0.461 ms with 0.081 ms standard deviation
(link latency was measured using ping). The operating system of choice on each
machine was Ubuntu 18.04.4 LTS with a 4.15 Linux Kernel. Additionally, all
nodes were connected to a Network Time Protocol (NTP) Server - Stratum-1
resulting in a time synchronisation for the nodes ranging from -0.042 us to 0.142
us in relation to the NTP server.

10 P. Mac¢kowiak and F.A. Kuipers

3.2 Test scenarios

Three possible scenarios for the analysis of network data are considered. These
three scenarios directly correspond to the types of description presented in Sec-
tion 2.2:

— Calculating the aggregated sum of delays measured in each domain.

— Comparing data against predetermined values.

— Determining which of the domains participating in the protocol gives a max-
imum value for a targeted function (argmax).

The test applications available within SCALE-MAMBA assume that while
the protocol can be executed between multiple parties, only one of them is re-
sponsible for the introduction of input data. To make the functions more realistic
and correspond to the situation of analysing network telemetry data, each of the
domains involved in the execution of the protocol inputs their own data during
the execution. This means that one iteration of the function first takes data from
each of the parties and then conducts a calculation defined within it. Sample code
of the third function is included in Appendix A.

In the analysis, the influence of the following parameters on the execution of
the protocol was checked:

Number of domains

— Network latency

— Transmission rate
Parallelization of the input data

Their impact was determined based on the time to execute one protocol
iteration.

The purpose of the analysis is to determine the performance and scalability of
the part of the architecture responsible for performing computation on the data,
but not the part responsible for the network measurements. For this reason, in
order to determine the upper-bound for the performance, each of the control
nodes responsible for initialising the function and providing data to the MPC
protocol will produce a synthetic data point each time the protocol asks for
the next value to the function. This achieves the necessary separation between
the performance of the MPC framework and the performance of the telemetry
technology.

3.3 Results

This section will present the results of our performance measurements. To the
best of our knowledge, at the time of writing this paper, results of a similar
nature have not been published. Existing results pertain to the performance of
MPC frameworks and comprise calculations of a different nature, for example
the multiplication of matrices, which makes direct comparison impossible.

Our results are presented as follows. First, the execution times of each of
the three functions are shown, depending on the number of domains involved in
the computation. Then one of the functions shows the impact of network delay,
transmission rate, and parallelization of the input data.

Internet transparency through multi-party computation 11

Aggregated delay Comparision of the value Argmax of domains

12 2500

78 g @ 2000
@))
£ £ 10 £
T T T

E6 £ £ 1500
= s g =
c c c

$4 s £ 1000
5 5 5
o o 6 o

% % £ 500
[]]

4 0

3 4 7 8 3 6 7 8 3 4 7 8

5 6
Number of domains

(a) (b) (c)

Fig. 5. The execution time in milliseconds in relation to the number of domains in case
of three functions. The vertical bar represents the standard deviation.

5 6 5
Number of domains Number of domains

Number of domains For the experiment, a range of 3 to 8 domains was used
in order to check the change in execution time. The data presented in the figures
were obtained by averaging the results over 10,000 consecutive iterations of the
function.

The effect of increasing the number of domains on the execution time is pre-
sented in Figure 5. For all three functions, a higher number of domains results
in a greater number of inputs and, as a result, an increase in communication
between the parties, and hence an increase in the execution time of a single
function iteration. The relation between the number of domains and execution
time seems linear, which is desirable behaviour in terms of scalability. The execu-
tion time also illustrates the potential for real-time analysis of the data. For the
first two functions, the execution time of a single iteration is between 2 and 10
ms, which shows that for simple functions, MPC allows making fast calculations.
For more complex functions, such as argmax determination, the execution time
is in seconds. Hence, in case of a real system for telemetry data analysis based
on MPC, very complex functions can be used for the quasi-real-time analysis of
events.

Network Latency The effect that network latency has on the execution time of
a single iteration was tested calculating the aggregated delay. As in the previous
experiment, the test results were obtained by averaging over 10,000 iterations.
In order to obtain predictable values of the delay, we used the Linux tool tc. The
latency in the test ranged from 0, which represents the initial latency on the
testbed, to 50 ms. The value of the latency corresponds to the round-trip network
delay between the domains. In Figure 6a, the effect on the execution time in
relation to network latency is presented. As can be observed, the execution time
grows significantly with increasing network latency. An important conclusion is
that the network latency plays a key role in successfully deploying the MPC-
based solution.

12 P. Mackowiak and F.A. Kuipers

—— 1 data point(s)

Execution time[ms]
Execution time[ms]

Execution time[ms]
N W B OO N ® O
=
)
| 58888
| 3
15} +]

10 4 T
—_— e
0
0 10 20 30 40 50 102 3 104 3 4 5 6 7 8
Round trip latency between domainsims] Link transmission rate[Mbit/s1 Number of domains

(a) (b) (c)

Fig. 6. (a) The execution time of a single function iteration in relation to the number
of domains and network latency. (b) The execution time of a single function iteration
in relation to the number of domains and transmission rate. (¢) The execution time of
a single function iteration in relation to the number of domains for three types of data
parallelization presented on a single plot.

Transmission rate As in the case of network latency, the tc program was
used to experiment with the transmission rate. The transmission rate was then
verified using the iperf tool. The impact of the transmission rate is presented
in Figure 6b (as the standard deviation ranged from approximately 1 ms to 4
ms, we omitted it for the sake of readability). Figure 6b illustrates that the
transmission rate has no significant influence on the execution time.

Parallelization of input data To examine the influence of data parallelization,
the function aggregating the delay over domains was modified in such a way that
during a single function iteration, instead of conducting calculations on one data
point, it is executed on five and ten data points. The effect of data parallelization
in relation to function execution is presented in Figure 6¢ and Figure 7. As can
be seen in the figures, while the parallelization of the input data increases the
execution time of a single iteration, it results in more data points being analysed
during that time. For example, “no parallelization” requires on average twice
as much time to perform computation on 10 data points than is the case when
inputting 10 data points at the same time. However, for very time-sensitive cases,
this trade-off may not be possible.

4 Related work

Improving transparency should be the result of the efforts of many network
domains. This section therefore presents related work in the context of secure
data sharing.

SEPIA [9] is a solution based on secure multiparty computation to enable
correlation and aggregation of network events, such as rule triggering in an In-
trusion Detection System. In order to create their solution, the authors pro-
posed their own protocol within which they developed a set of basic operations.

Internet transparency through multi-party computation 13

No parallelization Parallelization - 5 data points Parallelization - 10 data points

®
Execution time[ms]
= N
G G
Execution time[ms]
v
S

N
S

o
w
=]

IS
N
=]

Execution time[ms]

N

w
=
o

3 4 7 8 3 7 8 3 4 7 8

5 6
Number of domains

(a) (b) (c)

Fig. 7. The execution time of a single function iteration in relation to the number of
domains for three types of data parallelization: (a) No parallelization, (b) parallelization
of 5 data points, (c) parallelization of 10 data points.

5 6 5 6
Number of domains Number of domains

The difference between SEPIA and the solution presented in this paper is that
SEPTA discusses how to use the protocol in specific scenarios, such as correla-
tion of events, but does not address the issue of increasing transparency from
the end-user perspective.

The goal of GATA-X [4] is to support the development aimed at achieving
trustworthiness and sovereignty of digital infrastructure in Europe. This work
also emphasizes the importance of transparency. Moreover, the GATA-X require-
ments underscore the need for a decentralized system capable of secure data
exchange. While GAIA-X creates a conceptual framework focused mainly on
cloud solutions, our work proposes a modular solution for sharing descriptions
and measurements originating from infrastructure processing the traffic, to users
using it.

The purpose of SCION [5] is to allow the user to control the route that is
selected by their traffic. This is achieved by introducing the Isolation Domain
Concept, which is a logical presentation of a group of autonomous systems.
The user, in the SCION architecture, is informed about possible paths, which
allows him/her to choose the more appropriate one. As in SCION, our work
aims to improve the lack of transparency in the current Internet structure. The
difference is that we also allow the use of general descriptions not related to
traffic processing, but resulting from the infrastructure used. Additionally, the
implementation of the architecture presented in SCION requires agreements with
the ISP(s) in case of creating Isolation Domains.

Finally, the Responsible Internet [10] is a proposal for sovereignty and trans-
parency in the digital world. This visionary paper does not propose a concrete
solution, but its concepts lie at the basis of our present work.

5 Conclusion

In this paper, we have presented a multi-domain diagnostic system as a means
to improve Internet transparency. Our system leverages several technologies, like
multi-party computation, software-defined networking, and iOAM, to realize an

14

P. Mackowiak and F.A. Kuipers

overall design and proof-of-concept implementation. Via experiments, and in a
multi-domain context, the execution time of our solution was evaluated based on
various factors, such as variable number of domains, various functions analyzing
data, and variable network parameters used for communication between the
domains. The performance analysis demonstrates the feasibility of our approach,
yet it does hinge on the resource-efficiency of the MPC framework of choice.

Acknowledgements This research was supported by the Netherlands Organ-
isation for Scientific Research (NWO) under the CATRIN project and by the
Netherlands Organization for Applied Scientific Research (TNO).

References

10.

11.

12.

13.

14.

15.

Apache kafka documentation. https://kafka.apache.org/documentation/, last
accessed: Aug. 13, 2020

Rabbitmq. https://www.rabbitmq.com/, last accessed: Apr. 15, 2020

Zeromq. http://zeromq.org/, last accessed: Apr. 17, 2020

Gaia-x. https://www.data-infrastructure.eu/GAIAX/Redaktion/EN/
Publications/gaia-x-the-european-project-kicks-of-the-next-phase.pdf
(2020)

A.Perrig, P.Szalachowski, R.L.: SCION: a secure Internet architecture. Springer
(2017)

A Rastogi: Wysteria: A programming language for generic, mixed-mode multiparty
computation. https://bitbucket.org/aseemr/wysteria/wiki/Home (2014), last
accessed: Mar. 26, 2020

B.Mood: Frigaterelease. https://bitbucket.org/bmood/frigaterelease/src
(2020), last accessed: Sept. 30, 2020

Brockners, F., Mizrahi, T., Bhandari, S.: Data fields for in-situ oam (07), https://
tools.ietf.org/html/draft-ietf-ippm-ioam-data-10, last accessed: Aug. 13,
2020

Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: Sepia: Privacy-preserving
aggregation of multi-domain network events and statistics. Network 1(101101)
(2010)

C.Hesselman, P.Grosso, R.F.F.J.M.J.R.A.R.D.G.o.: A responsible internet to in-
crease trust in the digital world. Journal of Network and Systems Management
28(4), 882-922 (2020)

Cloud Security Alliance: Csa star framework. https://cloudsecurityalliance.
org/star/levels/, last accessed: Dec. 17, 2020

ENISA: Insider threat. https://www.enisa.europa.eu/topics/cyber-threats/
threats-and-trends/etl-review-folder/et1-2020-insider-threat (2020),
last accessed: Aug. 13, 2023

Mauricio, S.J.: Further Implementation of iOAM using IPv6 in FD.io Vector Packet
Processor. Master’s thesis, Department of Electrical and Computer Engineering,
Technische Universitét Kaiserslautern (2020)

N.Buescher: Cbmec-gc-2. https://gitlab.com/securityengineering/CBMC-GC-2
(2018), last accessed: Mar. 24, 2020

Smart, N.: Scale-mamba software. https://homes.esat.kuleuven.be/~nsmart/
SCALE/, last accessed: Aug. 15, 2020

Internet transparency through multi-party computation 15

16. Van Den Berg, D., Glans, R., De Koning, D., Kuipers, F.A., Lugtenburg, J., Po-
lachan, K., Venkata, P.T., Singh, C., Turkovic, B., Van Wijk, B.: Challenges in hap-
tic communications over the tactile internet. IEEE Access 5, 23502-23518 (2017)

A MPC code details

This appendix contains some code that is part of the Proof-of-Concept implementation.

4

RootCA

7
10.0.1.192
Player0.crt
10.0.1.141
Playerl.crt
10.0.1.105
Player2.crt
10.0.1.175
Player3.crt
10.0.1.196
Player4.crt
10.0.1.29
Playerb.crt
10.0.1.201
Player6.crt
2
9223372036855103489
1

Listing 1.1. A sample setup file used to configure the SCALE-MAMBA framework.

print_ln (7% START_.MPCL_xxxx%)
print_ln (7 xxxx _Max_delay _xxxx)

def maximum(a,b):
return a — ((a — b) & (a < b)) #CALE returns —1/1 when comparing values

def argmax (a,b):
return (a[0] — ((a[0] — b[0]) & (a[0] <Db[0])) ,
(C af0] < b[O])

&b[1]) [((a[0] > Db[0]) & a[l]))

@while_do (lambda x: x < 1, 0)
def cal_max_delay (i):

a (sregint (sint.get_private_input_from (0)),sregint (0))
b = (sregint (sint.get_private_input_from (1)),sregint (1))

¢ = (sregint(sint.get_private_input_from (2)),sregint (2))

max = argmax (a,b)
max = argmax (max,c)

16 P. Mac¢kowiak and F.A. Kuipers

print_ln (’Output:.value_of_max_delay.._.is_caused
uuuuuuuuuuuuuu by._.Player %s’ , max[1l].reveal ())

return i + 1

if __name__. = ’__main__":
cal_max_delay (0)

Listing 1.2. Code for an MPC function calculating the argmax of the presented values.
This function is written for an environment of three domains.

