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Abstract—The flexibility and scalability of cloud services have
led to their adoption across various industries. While it is easy to
identify deployments of very large cloud providers (hypergiants)
as they often publish the allocation of their network resources,
this is much less commonly the case for smaller providers. Despite
efforts by commercial IP intelligence providers to bridge this gap,
it is not clear how complete and reliable their data is, which
is compounded by the lack of transparency surrounding their
identification methods. In this early study, we utilize reverse DNS,
a public data source provided and used by network operators, to
identify the IP cloud space. We develop a Markov chain-based
classifier to identify patterns and structures in the reverse DNS
naming schemes of cloud providers. Our results indicate that
cloud infrastructure naming often differs significantly from that
of residential IP space, although there are some overlaps that
require further investigation. We believe that our model can be
used by network operators to identify cloud deployments with
varying levels of confidence.

I. INTRODUCTION

The past two decades have witnessed a cloud computing
revolution, making the term ubiquitous. Scalable and on-
demand access to computing resources have driven widespread
adoption across various industries. This has fostered a massive
market dominated by giants such as Amazon, Google or IBM
(to name a few) alongside numerous smaller providers that
have embraced the flexibility and resource scalability of cloud
computing as their core value [15].

This growing reliance on cloud services necessitates the
ability to identify cloud deployments on the Internet and
distinguish them from traditional infrastructure and end-user
connections as a crucial factor in network security enforce-
ment, traffic analysis and attribution, resource management,
and content geo-blocking. For instance, streaming services
need to ensure that the geographical distribution of cloud
resources can be used to bypass geo-restrictions [10].

While some large cloud providers (e.g., Azure, AWS, Ora-
cle) offer public IP lists of their infrastructure, aiding in iden-
tification, similar information for smaller providers is often
limited or unavailable. Commercial services like IP2Location,
IPInfo, and NetAcuity provide this information in commercial
datasets, but their collection methods are generally business
secrets.

This paper proposes an alternative approach for identifying
cloud providers by leveraging the reverse DNS ecosystem.
Managed by IP owners, reverse DNS offers valuable insights

into an IP address’s purpose. PTR records often reveal ge-
ographical location, infrastructure details, service types, and
even provider identification. While past research has explored
reverse DNS for network topology [8], [13] and privacy [16],
we present a novel application: cloud deployment detection.

We investigate the structure of cloud resource PTR names
and build a Markov chain-based classification system for cloud
identification. Our results show that cloud deployments often
exhibit distinct PTR structures compared to the residential IP
space, enabling clear identification. However, we also identify
instances of overlapping structures leading to misclassification.
Our preliminary findings demonstrate that our model can be
used with varying confidence, allowing operators to tailor
cloud identification strategies for their network management
needs.

II. RELATED WORK

Several works in the literature focused on extracting infor-
mation from Internet hostnames and, in particular, from the
reverse DNS space. Arouna et al. found that around 40% of
the allocated IPv4 address space has well-configured rDNS
entries, with deployment patterns varying by region and driven
by different factors in developed and developing countries [7].
Research has also focused on decoding rDNS naming patterns
for broadband Internet end hosts, examining whether ISPs use
intuitive keywords and if these keywords accurately reflect
the underlying last mile technology [11]. Chabarek et al.
developed PathAudit, a tool that extracts and decodes infor-
mation from interface DNS names, revealing diverse encoding
practices across networks [8]. Huffaker et al. developed DRoP,
an automated system for geolocating routers by decoding
geography-related strings in hostnames [9]. Luckie et al.
further advanced this work by creating a system that automati-
cally learns regular expressions to extract network names [14]
and ASNs [13] from hostnames. Later, Luckie et al. fur-
ther improved geolocation accuracy by training their system
with geographic code dictionaries and constraining inferences
with delay measurements. Their approach correctly geolocated
94.0% of router hostnames using geographic hints [12]. Re-
verse DNS records can also pose significant privacy risks by
exposing client identifiers and network dynamics, potentially
allowing device and individual tracking [16]. This abundance
of information available in reverse DNS names prompted us
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to investigate the feasibility of identifying cloud deployments
using reverse DNS names.

III. METHODOLOGY

The data input for our cloud detection model consists of
reverse DNS PTR records. As mentioned before, previous
research has shown that PTR records can encode, in various
parts of the name, quite some information, such as, among
others, geographical locations (e.g., a country, or a cardinal
direction), infrastructural details about the host (e.g., if it is
a virtual machine), or directly encoding an IP address. On
a higher level, one can consider these details as a sequence
of information tokens that together form PTR records. Given
the sequential structure of the records, we chose to model
them using Markov chains rather than machine learning (ML)
methods. In previous experiments, we applied both clustering
and classification algorithms but none of them performed
better than Markov chain, since these traditional ML methods
do not consider the sequential order of features while Markov
chains are designed to model sequences.

A. Markov chains and likelihood ratio

A Markov chain is a set of states combined with a set of
transitions (one-way arrows between states) that are labeled
with the probability of moving between the states. In our
context, the states are the parts of a hostname (called tokens,
defined more precisely in Sec. III-C), and the transitions
represent how the parts are put together sequentially to form
a complete hostname. The transition probabilities are derived
from a learning procedure based on a large set of example
hostnames, see Sec. III-D.

For a given hostname and Markov chain model, multiplying
the relevant transition probabilities gives the probability that
this model would generate that hostname. This intuitively
represents how well this hostname fits the model. However,
this number cannot be interpreted as the probability that this
hostname was generated by this model; that would require
an a-priori probability distribution over various models, cf.
Bayesian statistics.

What can be done however, is creating two Markov chains,
for two different classes of hostnames (cloud and residential),
and calculating the ratio of the likelihoods in both models.
This ratio is a measure for whether the hostname fits one model
better than the other. The optimal threshold may be far away
from 1, however; e.g., if one model allows a much larger set
of hostnames than the other, it will tend to give much lower
likelihoods than the other, even for hostnames that do fit it.

B. Data Preparation and Tokenization

Before fitting the data including the PTR records of both
cloud and residential explained in Sec. IV into our models, we
prepared and tokenized them using automated scripts. We filter
invalid and meaningless records (e.g., PTR records containing
only IP addresses, PTR records without an SLDs).

PTR names are represented as subdomains separated by a
dot (“.”). To find patterns inside these records, we removed the

second level domain (SLDs) because they do not provide any
information about naming convention patterns, but rather only
indicate the organization owning the name. After removing
the SLDs, we captured any type of IP representation within
the PTRs records, including both IPv4 and IPv6 with different
types of delimiters (“.”,“-”) and also partial IP addresses con-
sisting of a subset of the rightmost octets of the corresponding
IP address to the PTR record. To have a pattern of IP addresses,
we replaced any IP representation with the string ipaad, a
similar approach as in [11]. This pre-processing limits the
variability introduced by IP addresses, while maintaining the
structure of the PTR record. Next, to extract tokens from
the PTR records, we split them based on both “.” and “-”
delimiters. The reason to also consider “-” in addition to “.” is
that, based on manual observation, we noticed that there is not
only meaningful data in the entire subdomain but also within
each subdomain, and similarly we can find meaningful data
separated by “-”. Finally, we consider each part of the data as
a separate token.

C. States Definition

The tokens offer us a way to group information within a
set of PTR records in a meaningful manner. Analysis of the
pointer records show that they can be grouped semantically
in a small number of categories, which we use to define the
state of the Markov Chain we are building. Based on manual
analysis, we define the following states: IP, geo, infra, digit,
reg, none. Additionally, we added two special states, start and
end, to represent the beginning and end of the PTR string.
The definitions of these states, which we also summarize in
Table I, are as follows:

a) IP: Any representation of an IP address, replaced by
ipaad string, is assigned to the IP state.

b) geo: The geo state refers to geolocation data. To
detect if a token is a geocode, we check it against various
types of geographical data: country, city, town, and region
codes. We also consider geographical directions like “north”,
and “southeast” as geocodes. For country codes, we used the
ISO 3166-1 alpha-2 codes and for city and town codes, we
used the GeoNames geographical database [1]. Finally, we
manually defined a dictionary for geographical directions.

c) infra: We created a dictionary of meaningful words
found in PTR records. This dictionary includes words
like dynamic, static, dedicated, etc. Also we ex-
tracted the SLD name from the PTR (i.e., example for
example.com), and assigned that token to the infra state,
because we considered the SLD name as an indication the
operator name. By checking the meaningful words in records,
we captured the name of corporations and companies (e.g.,
Amentum), which we also added to our infra dictionary.

d) digit: Tokens consisting only of digits are assigned to
the digit state.

e) reg: Based on our observations, many tokens start
with characters followed by digits, such as vps1560. This
pattern can provide information about the scope of the IP
address, so we captured this regex pattern as the reg state.
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TABLE I: State Names and Descriptions

State Name Description

Geo Geolocation code
IP Any kind of IP representation for both IPv4 and IPv6

replaced by ipaad
Infra A word from infrastructure dictionary
Digit A string consisting of all digits
Reg A regular expression starts with letters followed by

digits (r‘\ˆ[a-zA-Z]+\[0-9]+’)
None None of the above states

f) none: Finally, if a token does not fit into any of the
above states, it is assigned the state “none”.

As an example, consider a PTR name with the value
“ec2-100-22-74-198.us-west-2.compute.amazonaws.com”. Af-
ter removing amazonaws.com as the SLD, and replac-
ing the IP address with the ipaad string, we obtain
ec2-ipaad.us-west-2.compute. Fig. 1 shows the
states for each token based on our algorithm.

ec2︸︷︷︸
reg

− ipaad︸ ︷︷ ︸
IP

. us︸︷︷︸
geo

−west︸︷︷︸
geo

− 2︸︷︷︸
digit

. compute︸ ︷︷ ︸
infra

Fig. 1: Markov chain states for a sample PTR

D. Transition Matrix

To build the transition matrix for the Markov chains, we first
calculated state sequences. For each PTR record in our dataset,
we calculated a sequence of states. This involved tokenizing
the PTR record and assigning each token to a predefined state,
based on our classification criteria. Then, we constructed 2-
grams using the sequences of states. A 2-gram is a pair of
consecutive states from the state sequence of a PTR record.
For example in Fig. 1, we have (start, reg) as the first 2-
gram in PTR. Finally, based on the 2-grams, we built the
transition matrices shown in Table II and Table III. Each entry
in the matrix represents the probability of transitioning from
one state to another, calculated from the frequency of 2-gram
occurrences across all PTR records. Namely, if ab indicates the
2-gram consisting of state a followed by state b, the transition
probability pij of transitioning from state i to state j is

pij =
|{ab, a = i, b = j}|

|{ab,∀a,∀b}|
(1)

E. Training, testing and evaluation

As indicated in Sec. III-A, a possible way of using Markov
chains for classification is by training a model for each relevant
class. In our case, we aim at distinguishing between cloud
hostnames and non-cloud ones, which we refer to as residential
hostnames. We therefore acquire two datasets, one for cloud
PTR records and one for residential ones (see Sec. IV). We
split both the cloud and residential datasets into 80% for
training and 20% for testing and built two Markov chains
from these two training sets. Then, for each sample in test

sets, we calculated the probability that it belongs to the
“cloud” Markov chain (pcloud) and the probability that it
belongs to the“residential” Markov chain (presidential) using
the corresponding chains built from training sets.

To calculate these probabilities, we first defined the states
for each sample and then traversed from one state to another
in the Markov chain, multiplying the transition probabilities
obtained from the transition matrix. After acquiring pcloud
(Table II) and presidential (Table III), we calculated the ratio
pcloud/presidential.

TABLE II: Transition probability for the cloud model

start ip infra geo reg digit none end

start - - 0.43 0.01 0.36 - 0.19 -
ip - - 0.39 0.18 0.02 - 0.08 0.34
infra - 0.2 0.34 - 0.06 0.05 0.02 0.32
geo - - 0.07 0.3 0.06 0.46 0.1 0.02
reg - 0.44 0.19 0.06 0.1 0.01 0.08 0.13
digit - - 0.66 0.03 0.01 0.01 0.02 0.27
none - 0.33 0.09 0.16 0.03 0.02 0.11 0.26
end - - - - - - - -

TABLE III: Transition probability for the residential model

start ip infra geo reg digit none end

start - 0.35 0.21 0.02 0.22 0.07 0.14 -
ip - - 0.26 0.07 0.16 0.03 0.32 0.17
infra - 0.31 0.09 0.02 0.02 0.03 0.09 0.44
geo - 0.03 0.06 0.16 0.01 0.07 0.11 0.58
reg - 0.2 0.02 0.11 0.07 0.07 0.2 0.32
digit - 0.24 0.08 0.01 0.05 0.37 0.18 0.08
none - 0.2 0.05 0.07 0.01 0.04 0.14 0.49
end - - - - - - - -

IV. DATASETS

The geolocation databases IP2location [2] and IPinfo [3]
classify IP ranges in multiple categories, including the “cloud”.
Similarly to [18], we considered IP ranges with a “DCH” (Data
Center/ Web Hosting/ Transit) usage type in IP2Location and
IP ranges with the hosting field marked as true in IPinfo as
cloud. We created the ground truth for our Markov chain
model by only taking the IP ranges where both geolocation
providers agree. Additionally, we included samples from the
published IP lists of three major providers: AWS [4], Azure
[5], and Oracle [6] to have a broader range of cloud samples.
For non-cloud samples, we again used the IP2location dataset,
considering IP ranges with the usage type “MOB”, “ISP”, and
“ISP/MOB” as residential.

To extract the corresponding PTR records for these IP
addresses, we used the OpenINTEL reverse DNS dataset [17].

The cloud dataset consists of 10,000 samples from each
provider and 10,000 samples from the intersection of the
geolocation datasets. To maintain a balance in our dataset,
we selected 40,000 samples from the residential IPs. After
preprocessing, to eliminate uninformative and invalid PTR
records, we obtained 39,721 cloud samples and 39,161 res-
idential samples (7,945 and 7,833 test samples).
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V. RESULTS

In this section, we present the outcomes of the analysis of
our proposed models, in terms of classification results. We
then explore the overlap between cloud and residential data
sequences to better understand the capability of our models.

A. Classification results

We applied the trained models for cloud and residential PTR
records to the test sets and calculated the ratio of cloud to
residential probabilities. The ratio values obtained from these
tests are shown in Fig. 2a, where the x-axis indexes the test
samples. Fig. 2a can be roughly partitioned in three parts.
On the top, we can see a prevalence of cloud samples, with
a high probability ratio (> 100). Similarly, we see a band
where residential samples are the most frequent (< 10−2). In
between, the two datasets overlap.

To gain a deeper insight into the distribution of the proba-
bility ratios, we plot the Kernel Density Estimate (KDE) for
the probability densities of ratio values for the two test sets.
Fig. 2b illustrates this. For better visualization, we presented
the ratio values on a log10 scale. This scaling helps to highlight
differences in the distributions more clearly.

Fig. 2b shows that cloud samples generally have a higher
probability ratio than residential ones. The residential samples
show a broader distribution of probabilities in our dataset, in-
dicating that there is more variability in the type of sequences
observed in this test set, and therefore more variability in
the way the corresponding PTR records are built. We also
see an overlap between cloud and residential samples. This
represents the intrinsic limit of our classification, as for this
overlap region our method cannot distinguish between cloud
and residential PTR records (see Sec.V-B).

To use our model as a classifier, it is necessary to apply
a threshold θ to the logarithmic probability ratio. If the
probability ratio is larger than θ, the model identifies this as a
“cloud” instance, otherwise a “residential” instance. However,
the overlap region identified in Fig. 2b means that any chosen
threshold will ultimately lead to false positives and false
negatives. To assess the accuracy of our models, we plotted
the Receiver Operating Characteristic (ROC) curve in Fig. 2c.
The curve is obtained by calculating the true positive and false
positive rates for θ ∈ [−10 : 0.5 : 4]. The area under the ROC
curve (AUC) is 0.93, showing our model has high accuracy.

B. Classification Overlap

As we saw in Fig. 2b, the logarithmic ratio distributions
of cloud and residential sequences overlap. To gain a better
understanding of this overlap, we analyzed the state sequences
for samples with a log10(ratio) between -3 and 2. We identified
213 sequences from the cloud test set and 222 from the resi-
dential test set in this range. Among these, only 47 sequences
were common to both cloud and residential datasets. Table IV
presents seven of these sequences.

The observed shortest sequence length is three, namely for
sequences in the form (start, state, end), where “state” is one
of the states defined in Table I. Short sequences are often

very generic, an observation that is confirmed by the fact
that we identify five of these six sequences in the overlap
(see Table IV). This means that, for these sequences, we
are more likely to make a classification error. The sequences
(start, reg/infra/none, end) appear in both cloud and resi-
dential samples with relatively high frequencies, and have a
logarithmic ratio close to 0, where we observe the highest
classification error. The exceptions are the sequence (start,
ip, end), which is present in both datasets but with a clear
prevalence among residential PTR records, and (start, digit,
end), which is only present in residential samples. We also
selected, as examples, three sequences that are unique to either
the cloud or the residential category, based on their frequency,
shown in Table V and Table VI, respectively, to highlight the
uniqueness of those sequences.

Interestingly, the top three highest values of unique se-
quences in cloud samples belong to two major cloud providers,
Google and Amazon. Similarly, the second and third most
frequent “residential” sequences belong to cox.net and com-
cast.net, respectively. We found several sequences that were
specific to certain providers. For example, we found 36 unique
sequences for AWS and four for Google, most of which
exclusive to these providers. Also for residential samples, we
found 11 and three unique sequences for comcast.net and
cox.net, respectively. Similarly to cloud providers, they also
have their exclusive sequences.

These findings suggest that while major providers can use
similar naming patterns as others, they still employ some
specific naming conventions that are unique to them. This
characteristic can represent a good indicator to discriminate
between clouds and non-clouds.

VI. CONCLUSION AND OPERATIONAL CONSIDERATIONS

In this early study, we presented a Markov chain model
based method to identify clouds based on DNS PTR names.
We trained on ground-truth data provided by commercial
services and major cloud providers. By defining distinct states
derived from different types of information embedded in
PTR records, we achieved a robust model with an AUC
of 0.93, indicating high accuracy. Upon examining overlaps
within our model, we found some common generic sequences,
particularly single-word PTR names, shared across datasets,
leading to misclassification. However, we also identified that
major providers employ specific patterns exclusive to them.
These unique sequences create discernible patterns for differ-
entiation. We leave to network operators interested in detecting
cloud deployments, the decision to establish the threshold
for classifying cloud resources, recognizing that different FP
and TP rates may reflect different operational needs. Based
on the results of our analysis, we recognized that if cloud
and residential operators marked their infrastructure more
clearly by avoiding poorly descriptive names (i.e., resulting
in short sequences), it would improve the overall transparency
of address space usage.

Future research could improve our approach by expanding
the PTR dictionary to include word variants and abbreviations,
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(a) Ratio of cloud probability values to resi-
dential probability (b) KDE plot of distribution ratio values (c) Receiver Operating Characteristic (ROC)

Fig. 2: Classification results

TABLE IV: Common Sequences in cloud and residential IP ranges in the overlap.

Sequence Samples in clouds Samples in residential Log10(ratio) PTR Sample in cloud PTR Sample in residential
(start, reg, end) 197 447 -0.167397 plesk03imp.imap.org.br. softbank220031170212.bbtec.net.

(start, infra, end) 80 110 0.167701 mail.noicisiamo.net. static.vnpt.vn.
(start, ip, end) 1 344 -1.554941 20-109-202-64.lot.net. 97e6b16a.skybroadband.com.

(start, none, end) 88 21 -0.137798 cccl.carlconnect.com. subz.tmsasia.com.
(start, geo, end) 9 2 -1.658913 athens.billx.com. kiboko.telkom.co.ke.

TABLE V: Unique sequences in cloud samples

Sequence Samples PTR Sample in dataset

(start, infra, infra, infra, ip, end) 1117 rate-limited-proxy-66-
249-89-114.google.com.

(start, reg, ip, infra, digit, end) 551 ec2-3-229-215-
54.compute-
1.amazonaws.com.

(start, reg, ip, none, geo, digit, infra, end) 400 ec2-3-39-156-
147.ap-northeast-
2.compute.amazonaws.com.

TABLE VI: Unique sequences in residential IP range samples

Sequence Samples PTR Sample in dataset

(start, infra, ip, none, end) 305 net-5-94-85-
17.cust.vodafonedsl.it.

(start, reg, ip, geo, geo, end) 208 ip98-177-18-
173.ph.ph.cox.net.

(start, none, ip, reg, geo, end) 168 c-69-140-160-
62.hsd1.md.comcast.net.

which were not explored in this study. This could further
enhance the model’s ability to accurately distinguish between
cloud and non-cloud resources.
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