
Lightweight INT on the Tofino programmable switch
Angelos Dimoglis

a.dimoglis@uva.nl
University of Amsterdam

The Netherlands

Leandro C. de Almeida
leandro.almeida@ifpb.edu.br
Federal Institute of Paraíba

Brazil

Konstantinos
Papadopoulos

konpapad@uom.edu.gr
University of Macedonia

Greece

Chrysa Papagianni
c.papagianni@uva.nl

University of Amsterdam
The Netherlands

Panagiotis Papadimitriou
papadimitriou@uom.edu.gr
University of Macedonia

Greece

Paola Grosso
p.grosso@uva.nl

University of Amsterdam
The Netherlands

ABSTRACT
In-band network telemetry (INT), enabled by programmable
data planes and the appearance of programming protocol-
independent languages such as P4, emerged as a viable ap-
proach for network monitoring. INT allows the collection
of fine-grained network information in real-time, increasing
network visibility, at the cost of network overhead. Several
lightweight INT approaches have been recently proposed
that attempt to alleviate the transmission overhead of INT,
while maintaining a high degree of monitoring accuracy.
However, their impact on the resources of the respective
hardware network devices has been hardly investigated as
most of the approaches are evaluated via simulation. In this
study, we provide proof of concept implementations of two
lightweight INT approaches that have been proposed for
path tracing on the Intel Tofino ASIC, identifying the chal-
lenges of porting the solution to the selected target. We
examine their performance, providing an in-depth analysis
of resource consumption.

CCS CONCEPTS
• Networks→ Programmable networks; Network mon-
itoring.

ACM Reference Format:
Angelos Dimoglis, Leandro C. de Almeida, Konstantinos Papadopou-
los, Chrysa Papagianni, Panagiotis Papadimitriou, and Paola Grosso.
2024. Lightweight INT on the Tofino programmable switch. In
The 30th Annual International Conference on Mobile Computing

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0489-5/24/11.
https://doi.org/10.1145/3636534.3696729

and Networking (ACM MobiCom ’24), November 18–22, 2024, Wash-
ington D.C., DC, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3636534.3696729

1 INTRODUCTION
In the last few years, networks have been rapidly increas-
ing in scale and becoming more complex than ever before.
Current data centers, ISPs, and enterprise networks are op-
erating at traffic rates of hundreds of millions of packets
per second per switch. For this reason, today’s networks
come with high requirements regarding the performance,
utilization, availability and security. In order to meet these
requirements, network monitoring is more crucial than ever
before. Many passive and active monitoring solutions have
been introduced to detect security issues, misconfigurations,
equipment failure and to perform traffic engineering. The
emergence of programmable data planes has led to the in-
troduction of in-band Network Telemetry (INT), a new form
of network telemetry providing significant advantages over
previous methods, such as flexible programming, in-depth
network visibility. This is done by inserting network state
information directly into the data packets’ headers. In fact,
INT can be performed effectively on programmable switches
which provide flexible packet forwarding at Terabit speeds.
The P4 programming language is the most prominent exam-
ple in this field, as it allows the use of a common language
interface on different kinds of devices (e.g., FPGAs, NPUs,
ASICs, etc.) [5, 11, 16].

The P4 INT data plane specification [2] describes differ-
ent INT modes of operation; at the two extremes telemetry
reports can be either directly exported by each INT node,
from their data plane to a telemetry collector, or they can be
embedded into the packets along the data path along with
the INT instructions (INT-MD mode). Nevertheless, the INT
framework poses some downsides. The most critical one
is the transmission overhead, which in the INT-MD mode
increases linearly with the number of hops and telemetry val-
ues being carried by packets. In [7] a lightweight form of INT

24

2429

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3636534.3696729
https://doi.org/10.1145/3636534.3696729
https://doi.org/10.1145/3636534.3696729
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3636534.3696729&domain=pdf&date_stamp=2024-12-04


ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Dimoglis et al.

is proposed to reduce transmission overhead. Specifically,
two versions are presented, i.e., a deterministic (DLINT) and
a probabilistic (PLINT), which are applied forpath tracing.
DLINT is based on the per-flow aggregation scheme, as

telemetry values are spread across the packets of a flow. This
approach requires coordination among the switches, which
can be accomplished by maintaining per-flow telemetry state
on each switch with the use of Bloom Filters. On the other
hand, in PLINT the telemetry values are encapsulated into
the packets with a certain probability, obviating the need
for coordination among the switches. The evaluation results
in [7] show that both DLINT and PLINT reduce transmis-
sion overhead compared to P4-based INT[2], while achieving
high efficiency and accuracy in terms of path tracing. How-
ever, the respective experiments were conducted in Mininet
using BMv2 software switches. In this study we are porting
the DLINT and PLINT approaches to the P4Programmable
Tofino Switch by Intel and we examine the performance of
both solutions in an environment consisting of both hard-
ware and virtual switches. Specifically, we are (i) looking into
the challenges of porting the solution to the selected hard-
ware target, (ii) investigate the impact of the INT approaches
on the utilization of the hardware resources.
In Section 2, we provide background information on the

two methods. In Section 3 we present the implementation for
the Tofino Switch. In Section 4, we examine the utilization
of the hardware resources for DLINT and PLINT in a hybrid
network consisting of virtual and hardware Tofino Switches.
In Section 5, there is a short description of similar state-of-
the-art solutions. Finally, in Section 6 we conclude reflecting
on the viability of lightweight INT.

2 BACKGROUND
We hereby elaborate on the functionality of the two INT
techniques (i.e., DLINT and PLINT) [7]. The main objective
of both INT mechanisms is to eliminate telemetry data re-
dundancy within a flow. To this end, DLINT and PLINT
exercise per-flow aggregation, i.e., they spread telemetry val-
ues across the packets of a flow. For instance, in the context
of path tracing, instead of encapsulating all hop IDs within
each packet (which would lead to a substantial transmission
overhead), the hop IDs are spread among multiple packets,
thereby, maintaining a small fixed-size telemetry header. In
this respect, DLINT and PLINT follow different approaches,
which are briefly explained below (see [7] for further details).
DLINT. DLINT relies on INT node coordination, such that
each node is aware which action(s) to perform (e.g., insert a
telemetry value) upon each incoming packet. This is achieved
through per-flow telemetry states maintained within the INT
nodes. More precisely, DLINT utilizes the following three
telemetry states (Fig. 1): (i) Awaiting Init, where the INT

node waits for an INIT signal in order to insert telemetry
data, (ii) Ready to Insert ID, where the INT node is ready
to insert its data into the following incoming packet of the
respective flow, and (iii) Inserted ID, where the INT node
has already inserted its own telemetry data and waits for a
signal to revert to the initial state (Awaiting Init) in order to
re-insert subsequent telemetry value(s). Practically, the third
state facilitates the reset of an INT node (telemetry-wise),
enabling an uninterrupted insertion of telemetry data over
the entire duration of each flow. To reduce the amount of
telemetry state that needs to be maintained within each INT
node, DLINT utilizes Bloom Filters.

Figure 1: DLINT: Finite State Machine on the switches

PLINT. Unlike the deterministic nature of DLINT, PLINT
employs a probabilistic approach, obviating the need for any
coordination among the INT nodes. More specifically, the
main idea behind PLINT is that each INT node can indepen-
dently insert telemetry data to each packet with a certain
probability. An entirely random insertion of telemetry val-
ues would benefit INT nodes closer to the destination, since
their data would be less likely to be replaced by other INT
nodes. PLINT addresses this issue by leveraging on reser-
voir sampling, which guarantees an equal probability for
the encapsulation of telemetry indicators among all INT
nodes. Since reservoir sampling requires the knowledge of
hop-count by each INT node, PLINT stores in its telemetry
header the TTL value of each packet at its entrance into the
INT domain (i.e., the TTL seen by the INT source).

3 LIGHTWEIGHT INT ON TOFINO
In this section we describe the implementation of DLINT
and PLINT on the Tofino Switch. We are offering a detailed
insight into the control flow of both algorithms and the
structure of the used telemetry headers in each case. Finally,

25

2430



Lightweight INT on the Tofino programmable switch ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

we list the challenges that we came across while trying to
port the code to the Tofino Switch. Furthermore, we describe
howwe dealt with them andwhat modifications were needed
to make the code fully compatible.

Figure 2: Pipeline in TNA (Tofino Native Architecture)

Porting DLINT: To port the code we had to modify the
original implementation to be compliant with the TNA archi-
tecture depicted in Figure 2. The Ingress Control implements
the standard IPv4 forwarding functionality. The Egress Con-
trol contains the INT logic. The DLINT algorithm is executed
only for TCP flows. A schematic of the DLINT implemen-
tation at the egress pipeline and its interaction with the
switch’s control plane is presented in Figure 3. Assuming
the packet’s type is TCP, the present switch is being identi-
fied. This means that the switch’s ID is being retrieved from
the control plane using the respective Match-Action Table
(MAT). In the following, the destination of the packet is being
checked, based on the egress port. A different block of code
will be executed depending on the destination indicating a
RESET signal or moving between the states READY_INS and
INSERTED depicted in Figure 1.

Figure 3: Overview of the DLINT implementation on
TNA

Before going forward with the control flow, let us review
how the coordination states are stored inside the switches.

Similarly to the previous implementation, we are using a
probabilistic data structure called Bloom Filter. BF enables
the compression of an arbitrary data set into a bit vector
and provide membership lookup using hash functions. To
implement the data structure we employ a multi-cell regis-
ter. Each cell represents a specific TCP flow. Thus each cell
stores a 2-bit number, which can be 0, 1 or 2. These numbers
represent the states AW_INIT, READY_INS and INSERTED
respectively. This register is being indexed by a hash function
based on the CRC32 algorithm. In order to have a distinct
cell for each flow, the function’s arguments include the IP
Addresses and the TCP ports of both ends (host and server).
We are also using the number of the protocol as an argument
(IPv4 in our case), so that there are no collisions. So, once
the destination of the incoming packet has been determined,
the index of the register is being calculated.
TCP traffic forwarded from the host (source) to the des-

tination, is considered valid to carry telemetry data, such
as signals for the switches or switch IDs. In that case, if the
packet is already carrying an INIT signal, the state of the
switch is being updated from AW_INIT to READY_INS using
a register action. If the packet is not carrying any telemetry
signal, then there are two possible scenarios depending on
the state of the switch.
Case 1: If the switch is at AW_INIT, the state is being changed
to READY_ INS. This means that the specific switch is the
first in the path and it should insert the INIT signal into the
packet. Now that the packet is carrying the INIT signal, it
will be able to change the state of the remaining switches as
described in the previous case.
Case 2: If the switch’s state is READY_INS, it is time to insert
its telemetry values into the packet (the switch’s ID). Thus,
the state is being changed to INSERTED and the packet is
now carrying the switchID of that switch. This packet is
being merely forwarded by the rest of the switches, as every
packet is supposed to carry only one SwitchID (per-flow
aggregation). The next packet will carry the switchID of the
next switch, etc.

Once all of the switches have transitioned to the INSERTED
state, it means that all the IDs of the switches have been
collected by the telemetry server and the path has been
fully reconstructed. When the TCP connection is severed, a
[RST,ACK] packet is being sent by the server/receiver.We are
using [RST,ACK] packets to carry the RESET signal instead
of any [ACK] packet. This way we make sure that enough
packets have been sent to collect the IDs of all the switches in
the path. This packet is being recognised by the first switch
in the opposite direction (last switch in the recorded path)
and the corresponding block of code is executed (see block
labeled as “ACK” in Figure 3). the switch’s state is being
changed to its initial state (AW_INIT) and the packet is now
carrying the RESET signal. This signal will be recognised by

26

2431



ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Dimoglis et al.

the remaining switches in the path and their state will be
modified to AW_INIT.

This last step concludes the control flow of our implemen-
tation on Tofino 2. In the below picture (Figure 4) there is
the structure of the telemetry header that is being used. The
telemetry data are embedded to the packet as TCP Options,
so the telemetry header should include some additional fields.
The first field is the kind of the TCP option, which can be
any number that is not being used by any other standard
protocol (e.g. 72). The next field is the length of the TCP
option, that is 4 bytes. The last field is the payload carrying
the telemetry data. It was necessary to expand this field to
16 bits (instead of 8 from the previous implementation), be-
cause the checksum calculation requires 16-bit alignment.
Besides, a 16-bit field seems more realistic for storing the ID
of a switch.

Figure 4: Structure of the telemetry header for DLINT

Porting PLINT: Similarly to DLINT, the IPv4 forwarding
is being performed in the Ingress Pipeline and the main
program of PLINT is in Egress. In this approach, there is no
need for coordination among the switches, thus we are not
using a register to store states. The switches are inserting
their IDs based on the reservoir sampling. This means that
the first switch insert its ID with a probability of 1 (always),
the second one with a probability of 1/2, the third one with
a probability of 1/3, etc.

But because there is the possibility of having non-P4 switches
in the path, the used probability is 1/hopNumber, where hop-
Num = init_TTL - ipv4_ttl. The init_TTL refers to the TTL
since the packet entered the telemetry session (encountered
the first P4 Switch). So, there is a probability of 1/hopNum for
every switch to replace the switch ID inside the packet with
its own. Once the packet has entered the Egress Control, the
switch is being identified. Like in the previous approach, this
means that the ID of the switch is being retrieved through
a MAT (see Figure 5). Now if the packet is not carrying any
telemetry data, this indicates that the packet is at the first
switch along the data path of the flow. So, telemetry data is
stored into the packet, including the ID of the first switch.
This happens every time a packet enters the first switch in
the path.

Figure 5: Overview of the PLINT implementation on
TNA

On the other hand, if the packet is already carrying a
telemetry header, another sequence of actions is being fol-
lowed. First, a random number from 1 to 128 is being calcu-
lated. This is going to be compared to our probability. The
probability is the maximum possible random number (128)
divided by the number of hops (init_TTL - ipv4_TTL). The
division is taking place inside a Register Action. If the cal-

Figure 6: Structure of the telemetry header for PLINT

culated random number is less than or equal to the result
of the division, the switch ID inside the telemetry header is
being replaced by the ID of the present switch. Otherwise,
the packet is being forwarded without any modification of
the telemetry values. The structure of the used telemetry
header is depicted in Figure 6. We are using TCP Option
(84) to distinguish it from the telemetry header of DLINT.
Here the length is 8 bytes (not 6 as expected), because of the
padding field.
Challenges: In our effort to port the approaches on the
switch we encountered several challenges. This stems from
the different data types and limited hardware resources. In
both cases we had to use different workarounds to make
some functions possible, such as multiple operations on a
single register and comparisons.

The primary challenge was in porting DLINT, where many
conditions require read/write operations on the Bloom Filter

27

2432



Lightweight INT on the Tofino programmable switch ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

for a single packet. Considering the restriction of being able
to execute only one Register Action per packet, one possible
solution is the recirculation of a packet before calling the
next Register Action. However, this approach is impractical;
it introduces significant delay, as the packet would need to
pass through the pipeline multiple times. Taking that into
account, the best course of action was to fully take advan-
tage of the SALU capabilities inside the Register Action. The
reconstruction of the algorithm was inevitable. Specifically,
considering that only two comparisons are allowed inside
an action, many of them had to be computed in advance. In
this way, we were able to determine the value that should
be written in the register. In addition, more register actions
were needed, depending on the case. Specifically, we are us-
ing 3 different Register Actions in our implementation (see
Figure 3). In PLINT there were not any major challenges.
The division operation is supported by the ALU on Tofino 2,
as mentioned in subsection 3, making the calculation of the
probability possible.

4 PERFORMANCE EVALUATION
Evaluation Environment: The evaluation of the DLINT
and PLINT approaches is conducted in a testbed that consists
of software and hardware switches and two communicating
hosts. The software switches are Tofino 2 Models running
on the remote machines, where the hosts are located, while
the HW target is a P4-programmable EdgeCore AS9516-32D
switch (TNA 2). The traffic is generated by the iperf tool.
The overview of this topology is shown in Figure 7.

TheHost initiates a TCP connection to theDestination/Server
and sends a flow of packets. Each switch is inserting its ID
based on the running program (DLINT/PLINT). At the last
hop (switch 5), the telemetry header is being extracted and
sent to the telemetry server. This is where the recorded path
is being reconstructed.

Figure 7: Topology of the evaluation environment

Evaluation Metrics & Measurements: To measure the
latency introduced by the INT logic, we move the DLINT
and PLINT implementation to the Ingress Control, as we
can use the recorded timestamps which can be retrieved
from the packet’s standard metadata.Specifically, we employ

the Ingress global_tstamp that refers to the time that the
packet arrived at the Ingress Control. The latency computa-
tion is taking place at the Egress Control, where the Egress
global_tstamp is available; the Egress global_tstamp refers to
the time when the packet arrived at the Egress Control. To es-
timate the actual time for the Ingress Processing, we subtract
from the Egress global_tstamp the Ingress global_tstamp, as
well as the time that the packet has spent in the queue of the
traffic manager that lies between the Ingress Deparser and
the Egress Parser (see Fig. 2) So, we use the time between the
packet’s enqueue and dequeue, which can be retrieved by the
deq_timedelta timestamp. Thus, the delay is calculated as fol-
lows and the value is added to the packet’s telemetry header
𝐷𝑒𝑙𝑎𝑦 = 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑠𝑡𝑎𝑚𝑝𝐸𝑔 − 𝑑𝑒𝑞_𝑑𝑒𝑙𝑡𝑎 − 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑠𝑡𝑎𝑚𝑝𝐼𝑛 .

Figure 8: Delay (single)

Figure 9: Delay (mix)

To evaluate the impact of the DLINT/PLINT approaches,
we compare the respective processing delay against the delay
introduced by the IPV4 forwarding functionality (FWD). The
respective delay CDFs for the duration of the experiment are
presented in Figures 4 and 9, for different basic cases of TCP
flows (starting with a single TCP flow at 5 Mbps and a set
of 5/10/20 Mbps flows). The selection of the TCP flow rates
is constrained by the use of the Tofino models in the hybrid
experimentation environment.

28

2433



ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Dimoglis et al.

L3 forwarding is the baseline subtracted from the PLINT
and DLINT measurements to retrieve the impact of the INT
approaches on processing delay. PLINT’s latency is lower
than DLINT’s, as it requires less processing and use of state-
ful resources compared to DLINT. For example, in PLINT
no network state is maintained on the switches, so no reg-
isters are required. The only process that is taking place is
the calculation of the probability and the insertion of the
telemetry header. PLINT and DLINT increase processing
delay on average by 12% and 17%, respectively, compared to
the baseline.

Resource DLINT PLINT FWD
Stages 7 7 2
SRAM 0.4% 0.3% 0.1%
TCAM 0.4% 0.4% 0.4%
Table 1: Resource Utilization

Table 1 presents thememory utilization (TCAMand SRAM)
and number of stages. The results are obtained using the P4
Insight (p4i) tool1 provided by Intel to inspect P4 code. The
use of TCAM is similar between the two methods and FWD
as it is being used to store only the keys for match-action
tables. On the other hand, there is a significant difference
on the utilized SRAM employed by registers, so DLINT’s
requirements are higher due to the use of the Bloom Filter
for keeping telemetry state.

Power type Ingress Pipeline

DLINT PLINT FWD
Weight 171.5 150.8 36.2

Worst-case Power (W) 1.25 1.12 0.35
Table 2: Power Consumption

With regards to power consumption, in Table 2, we present
for the PLINT, DLINT and FWD implemented in the ingress
pipeline the following metrics:
Weight: a unit-less metric provided by P4 Insight, that rep-
resents relative resource usage in each block of the Ingress
pipeline. Higher weights correlate with greater resource de-
mand, which indirectly reflects higher power consumption.
Worst-case Power: providing the power consumption (in
Watts) in the worst case scenario. These results can be col-
lected from the mau.power.log file, which is generated by
the P4 Compiler of Intel’s SDE.
As shown in Table 2, based on the reported weights as

indicators of power consumption, compared to the baseline
1https://www.intel.com.br/content/www/br/pt/products/details/network-
io/intelligent-fabric-processors/p4-insight.html.

is approximately 4 and 5 times more for DLINT and PLINT.
Based on the same metric DLINT is approximately 12% more
power-consuming than PLINT, as there is a difference of 20,7
in the weight values between DLINT and PLINT. However,
our findings on the worst case power consumption, indicate
that both our implementations of PLINT and DLINT may be
up to 3.5 timesmore power hungry than the basic forwarding.
We assume that the power-efficient design of the switch can
mitigate the impact of additional resource usage, leading to
lower than expected increase in power consumption.

5 RELATED WORK
The trade-off between monitoring accuracy and INT over-
head has been investigated for INT solutions. Most of the
proposed methods can be categorized as either determinis-
tic or probabilistic. Regarding the former, several solutions
adopt a sampling rate for inserting INT fields in packets
of a flow, as means to reduce overhead [4] [12] [13] [10]
where the rate can be adjusted at runtime either by the con-
trol plane (e.g., [13]) or the data plane (e.g., [10]). FINT [14],
based on a triple bitmap, enables setting telemetry tasks
and parameters (i.e., the combination of telemetry metadata
types, the INT period, etc.) dynamically at runtime, reducing
INT impact on network performance. Alternative proposi-
tions employ network topology partitioning [8] or clustering
[6] to ensure full coverage for the network, scalable teleme-
try and freshness/timeliness of telemetry information. The
DLINT approach employs telemetry states, maintained in
the switches, to support inter-switch coordination for the
spreading of telemetry data across the packets of a flow in
order to reduce the network overhead. Similar to PLINT,
there are a number of INT approaches that employ proba-
bilistic logic for inserting telemetry into the data packets[1]
[9] [3] avoiding the hassle of coordination among switches
or via the controller. Solutions that combine in band and
sketch-based approaches, either deterministic (e.g., [15]) or
probabilistic (e.g.,[17]) are complementary approaches that
use sketch-based compact data structures to achieve low
network overhead sacrificing accuracy. All approaches ex-
cluding PRoML-INT [12], evaluate the performance using
simulations without investigating the impact of the INT ap-
proach on the resources and processing of the hardware
network devices.

6 CONCLUSIONS
Following the advances in programmable data planes, INT
emerged as a monitoring framework that allows the collec-
tion of fine-grained telemetry information from the data
plane at line rate. In this paper, we have investigated how
two lightweight INT approaches, DLINT and PLINT, could be
implemented on the programmable switch and convey (i) the

29

2434



Lightweight INT on the Tofino programmable switch ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

corresponding challenges for programming such solutions
on the Tofino 2 ASIC and (ii) their impact on the utilization
of its constrained resources. Our evaluations show that on
average, PLINT and DLINT increase processing delay by
12% and 17%, respectively, compared to the baseline L3 for-
warding. Their impact in overall memory utilization is minor,
while the increase in the number of stages used and power
consumption is approximately by a factor of 3.5 for PLINT
and DLINT. This implies that the implementation could be
potentially further fined-tuned in the HW target.

ACKNOWLEDGMENTS
This work has been partially funded by the Dutch Research
Council NWO project CATRIN (NWA.1215.18.003) and the
European Commission Horizon Europe SNS JU project DE-
SIRE6G (101096466).

REFERENCES
[1] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni

Antichi, Minian Yu, and Michael Mitzenmacher. 2020. PINT: Proba-
bilistic in-band network telemetry. In Proceedings of the Annual con-
ference of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer
communication. 662–680.

[2] The P4.org Applications Working Group. [n. d.]. In-band network
telemetry dataplane specification v2.1. https://p4.org/p4-spec/docs/
INT_v2_1.pdf

[3] Abdulkadir Karaagac, Eli De Poorter, and Jeroen Hoebeke. 2020. In-
Band Network Telemetry in Industrial Wireless Sensor Networks. IEEE
Transactions on Network and Service Management 17, 1 (2020), 517–531.
https://doi.org/10.1109/TNSM.2019.2949509

[4] Youngho Kim, Dongeun Suh, and Sangheon Pack. 2018. Selective
in-band network telemetry for overhead reduction. In 2018 IEEE 7th
International Conference on Cloud Networking (CloudNet). IEEE, 1–3.

[5] Oliver Michel. 2019. Packet-Level Network Telemetry and Analytics.
Ph. D. Dissertation. University of Colorado at Boulder.

[6] Dandan Mo, Zhiruo Liu, Du Chen, and Deyun Gao. 2021. C-INT: An
Efficient Cluster Based In-Band Network Telemetry. In 2021 4th Inter-
national Conference on Hot Information-Centric Networking (HotICN).
IEEE, 129–134.

[7] Konstantinos Papadopoulos, Panagiotis Papadimitriou, and Chrysa
Papagianni. 2023. Deterministic and Probabilistic P4-Enabled Light-
weight In-Band Network Telemetry. IEEE Transactions on Network and
Service Management (2023).

[8] Goksel Simsek, Doğanalp Ergenç, and Ertan Onur. 2021. Efficient
network monitoring via in-band telemetry. In 2021 17th International
Conference on the Design of Reliable Communication Networks (DRCN).
IEEE, 1–6.

[9] Enge Song, Tian Pan, Chenhao Jia, Wendi Cao, Jiao Zhang, Tao Huang,
and Yunjie Liu. 2021. INT-label: Lightweight In-band Network-Wide
Telemetry via Interval-based Distributed Labelling. In IEEE INFOCOM
2021 - IEEE Conference on Computer Communications. 1–10.

[10] Dongeun Suh, Seokwon Jang, Sol Han, Sangheon Pack, and Xiaofei
Wang. 2020. Flexible sampling-based in-band network telemetry in
programmable data plane. ICT Express 6, 1 (2020), 62–65.

[11] Lizhuang Tan, Wei Su, Wei Zhang, Jianhui Lv, Zhenyi Zhang, Jingying
Miao, Xiaoxi Liu, and Na Li. 2021. In-band network telemetry: A
survey. Computer Networks 186 (2021), 107763.

[12] Shaofei Tang, Jiawei Kong, Bin Niu, and Zuqing Zhu. 2020. Pro-
grammable Multilayer INT: An Enabler for AI-Assisted Network Au-
tomation. IEEE Communications Magazine 58, 1 (2020), 26–32.

[13] Shaofei Tang, Deyun Li, Bin Niu, Jianquan Peng, and Zuqing Zhu.
2019. Sel-INT: A runtime-programmable selective in-band network
telemetry system. IEEE transactions on network and servicemanagement
17, 2 (2019), 708–721.

[14] Shengxu Xie, Guyu Hu, Changyou Xing, Jiachen Zu, and Yaqun Liu.
2022. FINT: Flexible In-band Network Telemetry method for data
center network. Computer Networks 216 (2022), 109232. https://doi.
org/10.1016/j.comnet.2022.109232

[15] Kaicheng Yang, Yuanpeng Li, Zirui Liu, Tong Yang, Yu Zhou, Jintao
He, Tong Zhao, Zhengyi Jia, Yongqiang Yang, et al. 2021. SketchINT:
Empowering INT with TowerSketch for per-flow per-switch measure-
ment. In 2021 IEEE 29th International Conference on Network Protocols
(ICNP). IEEE, 1–12.

[16] Minlan Yu. 2019. Network telemetry: towards a top-down approach.
ACM SIGCOMM Computer Communication Review 49, 1 (2019), 11–17.

[17] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, et al. 2021. Light-
Guardian: A Full-Visibility, Lightweight, In-band Telemetry System
Using Sketchlets.. In NSDI. 991–1010.

30

2435

https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://doi.org/10.1109/TNSM.2019.2949509
https://doi.org/10.1016/j.comnet.2022.109232
https://doi.org/10.1016/j.comnet.2022.109232

	Abstract
	1 Introduction
	2 Background
	3 Lightweight INT on TOFINO
	4 Performance Evaluation
	5 Related Work
	6 Conclusions
	Acknowledgments
	References



